108 Ru β^- decay 1969WiZX,1978Fr16

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Jean Blachot	ENSDF	1-Jul-2008					

Parent: ¹⁰⁸Ru: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=4.55 \text{ min } 5$; $Q(\beta^-)=1350 50$; $\%\beta^-$ decay=100.0

Source: ²³⁵U, ²³⁹Pu, ²⁴⁹Cf(n,f) E=th, rapid ruthenium chemistry.

 $Q(\beta^{-})=1320 \ 100 \ \text{from } \beta\gamma \ \text{coin} \ (1962\text{Pi02}) \ \text{was used for } \log ft \ \text{calculations.}$ See ¹⁰⁸Ru Adopted Levels for discussion on g.s. to g.s. $Q(\beta^{-})$ value.

Others: 1955Ba19, 1958Ba02, 1962Pi02, 1971Ri02, 1975Fe12.

The decay scheme is based on energy fits only. 1978Fr16 suggest that the 14.6 transition deexcites a 2⁻ level to the 1⁺ ground state; however, they give no arguments for the 2⁻ assignment. It is possibly based partly on the fact that $\alpha(14.6\gamma)=5.0(E1)$, 2617(E2) and 13.0(M1) so observation of the 14.6 transition in the photon spectrum suggests mult.=E1. Note that the order of the 73 and 91 γ 's is not established. Even with this uncertain placement, if one assumes that the observed transitions have mult.=E1, M1 or E2, the β^- feeding to the 165 level can be determined accurately enough to establish that $J^{\pi}=1^+$. Similarly one can determine I(β^- to 73.6 level)<3.4% (log ft>5.5) and I(β^- to alternate 91.3 level)<5.0% (log ft>5.3). Feeding to the 14.6 level cannot be determined since I(14.6 γ) is not known, and thus I β (g.s.) cannot be determined. However, g.s. feeding is probably large since J^{π} (g.s.)=1⁺.

¹⁰⁸Rh Levels

E(level)	\mathbf{J}^{π}	T _{1/2}	Comments
0.0	1^{+}	16.8 s 5	
14.6 73.65?			E(level): order of 73.65 and 91.33 transitions not established. The level could be at 91.33
164.95	1^{+}		

β^{-} radiations

E(decay)	E(level)	$I\beta^{-\ddagger\ddagger}$	Log ft	Comments
$(1.19 \times 10^3 5)$	164.95	46 10	4.43 13	av E β =433 26 E(decay): E β = 1150 10 (1962Pi02), E β = 1255 150 (1989Gr23).
$(1.34 \times 10^{3\#} 5)$ $(1.35 \times 10^{3} 5)$	14.6	<61	>15	av E&-505-26

[†] From intensity balance at each level.

[‡] Absolute intensity per 100 decays.

[#] Existence of this branch is questionable.

$\gamma(^{108}\text{Rh})$

I γ normalization: I(165 γ)=28% 6 relative to I(303 γ +312 γ +322 γ , ¹⁰⁷Pd)=73% 6 measured by 1962Pi02. Other: 32% (1975Fe12) relative to I(434 γ , ¹⁰⁸Pd)=43%.

Ε _γ ‡	$I_{\gamma}^{\ddagger \#}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.	α^{\dagger}
14.6 3		14.6		0.0	1^{+}		
73.65 [@] 20	4.1	73.65?		0.0	1^{+}	[D,E2]	2.2 18
91.33 [@] 7	8.5 2	164.95	1^{+}	73.65?		[D,E2]	1.0 8
150.46 15	28 1	164.95	1^{+}	14.6		[D,E2]	0.18 13
164.95 22	100 3	164.95	1^{+}	0.0	1^{+}	[M1,E2]	0.16 7

Continued on next page (footnotes at end of table)

$^{108} {\rm Ru}\,\beta^-$ decay 1969WiZX,1978Fr16 (continued)

$\gamma(^{108}\text{Rh})$ (continued)

 † Value covers all multipolarities shown.

[‡] From 1969WiZX, except for the 14.6y which is from 1978Fr16.
[#] For absolute intensity per 100 decays, multiply by 0.28 6.
[@] Placement of transition in the level scheme is uncertain.

¹⁰⁸Ru β⁻ decay 1969WiZX,1978Fr16

