		Type	Author	History Citation Literature Cutoff Date								
		Full Evalua	ation Jean Black	not ENSDF 1-Jul-2008								
$Q(\beta^{-}) = -1918 \ 3;$ Note: Current eva	S(n)=9223 aluation ha	3.2 <i>17</i> ; S(p)=9949 <i>12</i> ; as used the following	$Q(\alpha) = -3856 \ 3$ Q record -1922	2012Wa38 5 9228 5 9950 12-3860 5 2003Au03.								
			1	⁰⁸ Pd Levels								
	Cross Reference (XREF) Flags											
		A 108 Rh β^{-} decay B 108 Rh β^{-} decay C 108 Ag ε decay D 108 Ag ε decay E 106 Pd(t,p) F 108 Pd(e,e')	y (16.8 s) G y (6.0 min) H (2.382 min) I (438 y) J K L									
E(level)	J^{π}	T _{1/2}	XREF	Comments								
0 [#] 433.938 [#] 4	0+ 2+	stable 23.9 ps 7	ABCDEFGHI JKLM ABCDEFGHI JKLM	NOP For charge distribution parameters see (e,e) (1978Ar07). NOP $Q=-0.58 \ 4; \ \mu=+0.72 \ 6$ $J^{\pi}: L(t,p)=2.$ $T_{1/2}: \text{ from B(E2) in Coulomb excitation.}$ $\mu: \text{ from 1980Br01, 1989Ra17. Other: +0.64 \ 6 (1985ThZY).}$								
931.15 ^e 4	2+	6.2 ps 4	ABC EFGHIJKLM	Q: from 1989Ra17. Other: -0.70 27 (1981Ko06). OP J^{π} : $\alpha, \gamma(\theta)$ in Coulomb excitation. $T_{1/2}$: weighted average of 6.8 ps 11 from B(E2) in Coulomb excitation, and 6.1 ps 4 from B(E2) in (e,e').								
1048.216 [#] 6	4+	2.8 ps 3	B D GHiJKlM	NO XREF: $i(1050)l(1050)$. J^{π} : $\gamma\gamma(\theta)$, $(\text{pol }\gamma)(\theta)$ in 438-y ¹⁰⁸ Ag(ε).								
1052.78 5	0+	4.0 ps 4	A C E GHIJKIM	 T_{1/2}: from B(E2) in Coulomb excitation. P XREF: i(1050)l(1050). E(level): transition not observed. Energy is from E(level) difference. J^π: L(t,p)=0. 								
1314.23 6	0+	>25 ps	C GH KL	T _{1/2} : from B(E2) in Coulomb excitation. P $T_{1/2}$: from B(E2) in Coulomb excitation. J^{π} : $\gamma\gamma(\theta)$ in 2.382-min ¹⁰⁸ Ag(ε). Excited in (p,t).								
1335.25 ^{<i>f</i>} 6	3+		в сікм	J^{π} : γ' s to 2 ⁺ . Not fed in decay of 2.382-min ¹⁰⁸ Ag, J^{π} =1 ⁺ , or 438-y ¹⁰⁸ Ag, J^{π} =6 ⁺ . Not seen in Coulomb excitation, (t,p), (p,p') or (d,d'). Analogy to ¹⁰⁴ Pd, ¹⁰⁶ Pd in (n,n' γ) (1975Go11).								
1441.18 4	2+	4.8 ps +12-10	A C GHIJ	$T_{1/2}$: from B(E2) in Coulomb excitation. I^{π} : $\gamma\gamma(\theta)$ in 2 382-min ${}^{108}Ag(s)$ log $f=5.4$ from 1^+								
1539.96 5 1624.16 ^e 21	(1 ⁺ ,2 ⁺) (4 ⁺)	1.69 ps 20	ACGHL HIJLM	J^{π} : log $ft=6.1$ from 1 ⁺ . γ to 0 ⁺ , γ to (3 ⁺). $T_{1/2}$: from B(E2) in Coulomb excitation. J^{π} : multiple Coulomb excitation. Comparison with boson expansion model. γ to 2 ⁺ . Excited in (d,d'), (p,p'), (p,t).								
1771.126 [#] 11	6+	0.88 ps 10	BD GIJKM	N $T_{1/2}$: from B(E2) in Coulomb excitation. J ^{π} : $\gamma\gamma(\theta)$, (pol $\gamma)(\theta)$ in 438-y ¹⁰⁸ Ag(ε).								
1955.8 <i>6</i> 1989.86 <i>12</i>	4 ⁺ (4 ⁺)	4.7 ps 18	E JL EG	J^{π} : L(t,p)=4. T _{1/2} : from B(E2) in Coulomb excitation. T _{1/2} : from B(E2) in Coulomb excitation.								
	. /			J^{π} : L(t,p)=(4). γ 's to 2 ⁺ ,4 ⁺ .								

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

¹⁰⁸Pd Levels (continued)

E(level)	J^{π}	T _{1/2}	XREF	Comments
2015 <i>10</i> 2046.65 <i>14</i>	3-	<1 ps	E EFGHIJ L	B(E3) \uparrow =0.093 26; β_3 =0.14 1 J ^{π} : L(p,p')=3. T _{1/2} : from Doppler broadening in Coulomb excitation. B(E3) \uparrow : from in Coulomb excitation for I(1612 γ)=100%. β_3 : from (p,p').
2083.56 ^{<i>f</i>} 12 2098.67? 24 2141 10 2218.00 11 2231.1 5 2259.01 ^{<i>e</i>} 20 2281.21? 14 2282.43 10	5^+ (1,2 ⁺) (0 ⁺) 2 ⁺ 6 ⁺		K M G E GH K M G K M	J^{π} : γ 's to 0 ⁺ ,2 ⁺ . J^{π} : L(t,p)=(0). J^{π} : L(t,p)=2.
2282.53 11 2324.39 ^{<i>a</i>} 9 2362 10 2391.42 23 2397.4 4 2404.1? 3	5 ⁻ (2 ⁺) 2 ⁺ (8 ⁺)		B GH M E H K MN E hI E Gh G E	J^{π} : L(t,p)=5. J^{π} : L(t,p)=(2). J^{π} : L(t,p)=2.
2418 10 2421.2 10 2466 10	(6 ⁺) 4 ⁺	1.01 ps +43-10	E J E h	$T_{1/2}$, J^{π} : from B(E2) in Coulomb excitation. XREF: h(2470). J^{π} : L(t,p)=4.
2471.8 3 2477.57 24 2528.33 20 2530 22 19	(2+)		Gh M	XREF: h(2470). J^{π} : γ 's to 0 ⁺ and 4 ⁺ .
2530.22 17 2531 10 2536.1 3 2540.2 3	4 ⁻ ,5 ⁻ 4 ⁺		KL B H E G I	J^{π} : L(d, ³ He)=4 and assumption of g9/2 pickup. J^{π} : L(t,p)=4.
2548.39 [#] 10 2578 10 2637 10	8 ⁺	0.44 ps 5	JK MN E E	$T_{1/2}$: from B(E2) in Coulomb excitation.
2671.33 ^d 20 2691 10	(5^+) (5^-)		E H M E h	J^{π} : L(t,p)=(5).
2709.48 ^{& 8} 2720.0 3 2761.24 ^a 7 2790 20 2842 026 7	6(-) * 2+ 7-		K M E Gh K MN H L	J^{π} : L(t,p)=2.
2842.03° 7 2863.70 18 2888.3 4	$(4^+,5^+,6^+)$		BEK GH	J^{π} : γ 's to (4 ⁺), 4 ⁺ and 6 ⁺ . Logft=4.9 from (5 ⁺).
2918.56 [†] 23 2940 20 2953.65 ^e 19 2969 20 3050 20 3088.89 ^b 9 3100.25 ^{&} 8 3110.7 ^d 3	(7^{+}) (8^{+}) $4^{-},5^{-}$ $8^{(-)}$ $8^{(-)}$ (7^{+})		M HI K H L K M K M M	J^{π} : L(d, ³ He)=4 and assumption of g9/2 pickup.
3140 20			Н	

Adopted Levels	, Gammas	(continued)
----------------	----------	-------------

E(level)	$J^{\pi \dagger}$	XREF	E(level)	$J^{\pi^{\dagger}}$	XREF
3257.01 [@] 13	10^{+}	K MN	4492.86 ^{&} 16	12 ⁽⁻⁾ ‡	ΚM
3280.24 ^{<i>a</i>} 12	9-	K MN	4528.5 ^d 10	(11^{+})	М
3286.64 12			4642.40 [@] 19	14+	K MN
3350.89 [#] 14	10^{+}	MN	4684.3 ^b 5	(12^{-})	М
3420.24 ^C 15	9-	M	4710.9 <i>3</i>	(13)	М
3423.8 <i>3</i>		M	4777.7 ^a 3	(13 ⁻)	K MN
3727.35 ^{&} 13	10(-)‡	ΚM	4976.60 [#] 20	14+	K MN
3748.5 ^d 3	(9 ⁺)	М	5132.4 3		М
3789.7 <mark>°</mark> 3	(10^{+})	М	5325.8 ^{&} 3	(14 ⁻) [‡]	М
3793.69 ^b 22	$10^{(-)}$	ΚM	5370.9 ^d 15	(13 ⁺)	М
3798.31 [@] 17	12+	ΚM	5608.1 4		М
3859.0 <i>3</i>		М	5632.0 ^{<i>a</i>} 3	(15 ⁻)	M
3963.94 ^a 16	11-	K MN	5691.91 [@] 22	16+	K MN
4120.4 3	(11)	М	6225.2 ^{&} 8	$(16^{-})^{\ddagger}$	M
4158.7 [#] 9	12^{+}	K MN	6517.3 ^{<i>a</i>} 4	(17^{-})	M
4194.7 ^c 3	11-	М	6827.9 [@] 10	18^{+}	MN
4377.70 24	(11)	M			

¹⁰⁸Pd Levels (continued)

 † J^π without comments are based on band structure and decay pattern.

[‡] Tentative negative parity assignment based on systematic of even-mass isotopes of palladium.

Band(A): g.s., yrast band.
@ Band(B): 10⁺ band.

[&] Band(C): $vh_{11/2} \otimes v(g_{7/2}, d_{5/2}), \alpha = 0.$

^{*a*} Band(c): $vh_{11/2} \otimes v(g_{7/2}, d_{5/2}), \alpha = 1.$

^{*b*} Band(D): $vh_{11/2} \otimes v(g_{7/2}, d_{5/2}), \alpha = 0.$

^{*c*} Band(d): $\nu h_{11/2} \otimes \nu(g_{7/2}, d_{5/2}), \alpha = 1.$

^d Band(E): (5⁺) band, α =1. Tentatively based on second lowest (ν h_{11/2}) excitation.

^{*e*} Band(F): γ vibrational band, α =0.

^{*f*} Band(f): γ vibrational band, α =1.

$\gamma(^{108}\text{Pd})$

E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\ddagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	δ	α^{a}	$I_{(\gamma+ce)}$	Comments
433.938 931.15	2 ⁺ 2 ⁺	433.937 <i>4</i> 497.22 7	100 100.0 <i>15</i>	$ \begin{array}{c} 0 & 0^+ \\ 433.938 & 2^+ \end{array} $	[E2] M1+E2	-3.1 4	0.0091 0.0061		B(E2)(W.u.)=50.4 15 B(M1)(W.u.)=0.0022 6; B(E2)(W.u.)=72 6 Mult.: D+Q from $\gamma\gamma(\theta)$ in Coulomb excitation. RUL.
1048.216	4+	931.15 <i>10</i> 117 [#] 614.276 <i>4</i>	24.1 <i>18</i> 0.0004 [@] 100	$\begin{array}{ccc} 0 & 0^+ \\ 931.15 & 2^+ \\ 433.938 & 2^+ \end{array}$	[E2] [E2] E2		0.801		B(E2)(W.u.)=0.83 9 B(E2)(W.u.)=1.21 14 B(E2)(W.u.)=76 9 Mult : from $aq(\theta)$ and (pol a)(θ) in $438 \times 10^{108} Ag(c)$
1052.78	0+	122 [#] 618.84 <i>5</i> 1052.78	0.027 [@] 100	$\begin{array}{cccc} 931.15 & 2^+ \\ 433.938 & 2^+ \\ 0 & 0^+ \end{array}$	[E2] [E2]			<0.0068	B(E2)(W.u.)=47 +5-11 B(E2)(W.u.)=52 5 I($\gamma+ce$): from 1987Es01. Transition not observed. Energy is from E(level) difference
1314.23	0^+	383.2 <i>2</i> 880.26 <i>7</i>	20.9 <i>21</i> 100	931.15 2^+ 433.938 2^+	[E2] [E2]		0.0134		B(E2)(Wu) < 16 $B(E2)(Wu) < 1.2$
1335.25	3+	404.09 9 901.33 9	100 7 100 5	931.15 2 ⁺ 433.938 2 ⁺	[E2] M1+E2	≤−5	0.0104 10		$\delta: \delta \le -5$ or $\delta \le 0.2$; the latter value is less likely for positive mixing ratio
1441.18	2+	388.6 4 393 1	13 4 <5	1052.78 0 ⁺ 1048.216 4 ⁺	[E2] [E2]		0.0128		B(E2)(W.u.)=35 +14-15 B(E2)(W.u.)=6 +7-6 I_{γ} : estimated by evaluator from spectrum in ε decay where the insert in fig. 1 of 1973Si02 shows no evidence for a 393 γ . This strongly suggests that the value of 25 +6-4 in Coulomb excitation is too large.
		510.1 2	20 5	931.15 2+					B(E2)(W.u.)=11 +4-5 L: average of <25 (ε decay) and >14 (Coul. ex.)
		1007.22 <i>5</i> 1441.14 <i>10</i>	100 5 25 5	433.938 2 ⁺ 0 0 ⁺	[E2]				B(E2)(W.u.)=1.7 +10-2 B(E2)(W.u.)=0.10 +3-4 I _{\gamma} : weighted average of I _γ /I _γ (1007 _γ) from ε decay and (n,n'γ). E _γ : E=1441 60 10 reported in (n,n'γ).
1539.96	(1+,2+)	204.5 ^c 3 225.6 ^c 2 608.73 13 1106.01 6	13.8 <i>15</i> 17.3 <i>20</i> 34 <i>4</i> 100 <i>7</i>	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	[E2] [E2]		0.110 0.078		
1624.16	(4 ⁺)	1540.03 <i>11</i> 184 <i>1</i>	53 7	$\begin{array}{c} 0 & 0^{+} \\ 1441.18 & 2^{+} \end{array}$	[E2]				I _γ : I _γ (1540γ)/I _γ (1106γ)=0.64 9 in 2.382-min ¹⁰⁸ Ag ε decay. B(E2)(W.u.)=3.6 +27-11
		577 <i>1</i> 694 <i>1</i> 1191 <i>1</i>	22 <i>3</i> 100 <i>11</i> <7.8	$\begin{array}{cccc} 1048.216 & 4^+ \\ 931.15 & 2^+ \\ 433.938 & 2^+ \end{array}$	[E2] [E2] [E2]				$I\gamma=0.0085 + 64-26.$ B(E2)(W.u.)=30 7 B(E2)(W.u.)=54 11 B(E2)(W.u.)=0.14 14

4

 $^{108}_{46}{\rm Pd}_{62}$ -4

	Adopted Levels, Gammas (continued)										
						<u>γ</u>	(¹⁰⁸ Pd) (continued)				
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	Iγ [‡]	\mathbf{E}_{f}	J_f^π	Mult.	Comments				
1771.126	6+	722.907 10	100 2	1048.216	4+	E2	B(E2)(W.u.) = 107 I3				
1955.8	4+	331		1624.16	(4+)	[E2]	Mult.: from $\gamma\gamma(\theta)$, (pol γ)(θ) in 438-y ¹⁰⁰ Ag(ε). B(E2)(W.u.)=1.9 +48-11 Ly: $I\gamma$ =0.23 +58-21.				
		908 1		1048.216	4+	[E2]	B(E2)(W.u.) < 1.8 I + b < 34				
		1025		931.15	2+	[E2]	$B(E2)(W.u.)=2.9 \ 11$ $I_{\gamma}: I_{\gamma}=100 \ +38-25.$				
1989.86	(4^{+})	548.2 <i>3</i>	37 4	1441.18	2^{+}						
		655.1 <i>3</i>	27 4	1335.25	3+						
		941.65 15	100 8	1048.216	4+						
		1058.6 5	20 4	931.15	2+						
		1555.9 6	16 <i>3</i>	433.938	2+						
2046.65	3-	998 [#]	<24 [@]	1048.216	4+						
		1115 [#]	$10^{@} 10$	931 15	2+						
		1612 72 14	100	/33 038	2+		$B(E1)(W_{H}) > 6.2 \times 10^{-5}$				
2083 56	5+	313 1 0	17.3	1771 126	2 6 ⁺		$D(E1)(W.d.) > 0.2 \times 10$				
2005.50	5	74831	100 7	1335.25	0 2+						
2008 672	$(1 2^{+})$	1664.8.4	54.8	1333.23	5 2+						
2098.07	(1,2)	2008 6 3	100 12	433.938	$^{2}_{0^{+}}$						
2218.00	2+	677 00 13	71.5	1530.06	(1+2+)		Unplaced by authors in $(n n'n)$ Placed by evaluators on the basis of energy fit				
2210.00	2	1164 9 9	8120	1052 78	(1,2)		Onphaced by authors in (ii,ii y). Traced by evaluators on the basis of chergy in.				
		128776	13 4 22	031 15	0 2+						
		1784 1 2	100.10	/33.038	$\frac{2}{2^{+}}$						
2231-1		1182.0.5	100 10	1048 216	2 4+						
2251.1	6+	634.0.1	100 6	1624 16	(4^+)						
2239.01	0	1211 2 5	11.3	1024.10	(+) 1 ⁺						
2281 212		1211.2 J	57.5	031 15	4 2+						
2201.21:		1930.1 2	100 11	/33.038	$\frac{2}{2^{+}}$						
2282 13		51131	100 11	433.936	2 6 ⁺						
2282.43		047 27 11	100 4	1335.25	0 2+						
2202.33		1234 2 3	20.6.20	1048 216	J 1+						
2324 30	5-	12767 10	100	1048.216	- 1+						
2324.59	2+	1460 4 3	100 11	031 15	7 2+						
2391.42	2	1400.45	100 11	931.13	2						
		1957.200 4	61° 11	433.938	2' 0+						
2207 4	(0+)	2391.4 7	41 ð	0	0'						
2397.4	(8')	020.3 4	100	1//1.126	0' 0+						
2404.1?	((+)	19/0.1 3	100	455.958	\angle	1001	$D(D)/(W \rightarrow 57 + 6.25)$				
2421.2	(0')	19/1	100	1624.16	(4') (4+)	[E2]	B(E2)(W.u.)=57 + 0-25				
24/1.8	(0+)	84/.04	100	1024.10	(4')						
2477.57	(2^{+})	1429.5 <i>3</i>	/9 11	1048.216	4'						

S

From ENSDF

 $^{108}_{46}{\rm Pd}_{62}$ -5

$\gamma(^{108}\text{Pd})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	J_f^{π} Mult.	Comments
2477.57	(2^{+})	2044.4 8	33 8	433.938 2	2+	
	. ,	2476.8 5	100 11	0 0)+	
2528.33		757.2 2	100	1771.126 6	5 ⁺	
2530.22		205.6 2	58 9	2324.39 5	5-	
		1482.9 4	100 22	1048.216 4	ļ+	
2536.1		2102.2 5	100	433.938 2	2+	
2540.2	4+	1608.5 5	43 9	931.15 2	2+	
		2106.4 3	100 12	433.938 2	2+	
2548.39	8+	777.2 1	100	1771.126 6	5 ⁺ [E2]	B(E2)(W.u.)=148 17
2671.33	(5 ⁺)	1623.1 2	100	1048.216 4	+	
2709.48	6(-)	385.2 1	100 7	2324.39 5	5-	
	- 1	938.2 1	96 8	1771.126 6	5 ⁺	
2720.0	2+	2286.0 3	100	433.938 2	- -	
2761.24	7-	436.8 1	17.3 13	2324.39 5) [_]	
2012.02	-	990.2 1	100 5	1//1.126 6)' -()	
2842.03		132.8 3	6.0 13	2709.48 6)() -+	
		10/0.9 1	100.6	17/1.126 6) '	
2863.70	$(4^+, 5^+, 6^+)$	327.6°C 3	8.8 ^{x} 15	2536.1		
		581.1 2	100 7	2282.43		
		1092.7 3	73	1771.126 6) ⁺	
2888.3		1957.2 ⁰ 4	92 ⁰ 17	931.15 2	2+	
		2454 1	100 17	433.938 2) +	
2918.56	(7^+)	835.0 2	100	2083.56 5	5+ 	
2953.65	(8+)	694.7 <i>I</i>	100	2259.01 6	\mathbf{p}^{\pm}	
3088.89	8(-)	246.8 1	39 4	2842.03 7	/-	
		327.7 1	100 7	2761.24 7	/-	
3100.25	8(-)	258.3 1	50 4	2842.03 7	/— —	
		339.0 1	81.6	2/61.24 7	(_)	
2110 5		390.7 1	100 7	2709.48 6) ⁽⁻⁾	
3110.7	(7^{+})	439.4 2	100	26/1.33 (5') 9 ⁺)	
3257.01	101	303.4 2	2.6 4	2953.65 (8 [.])	
2280.24	0-	/08.0 /	100 4	2348.39 8	5 ⁻ 7—	
3280.24	9	519.01	100	2/01.24 /	-	
3200.04	10+	525.4 I 802 5 1	100	2/01.24 /	2+	
3420.24	0-	578 2 2	89 14	2340.37 0	7—	
5720.27	,	659.0.2	100 16	2761 24 7	-	
3423.8		875.4.3	100 10	2548.39 8	<u></u> +	
3727 35	$10^{(-)}$	627 1 1	100	3100.25 8	(-)	
3748.5	(9^+)	637.8 2	100	3110.7 (, 7 ⁺)	
3789.7	(10^{+})	836.3 3	100 21	2953.65	.) 8 ⁺)	
5107.1	(10)	550.5 5	100 21	(- ,	

6

γ (¹⁰⁸Pd) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$\mathrm{I}_{\gamma}^{\ddagger}$	\mathbf{E}_{f}	J_f^π
3789.7	(10^{+})	1240.7 5	9.×10 ¹ 3	2548.39 8+	4710.9	(13)	912.5 2	100	3798.31	12^{+}
3793.69	$10^{(-)}$	373.6 14	14 <i>3</i>	3420.24 9-	4777.7	(13^{-})	813.8 2	100	3963.94	11-
		704.8 2	100 10	3088.89 8(-)	4976.60	14+	818.0 <i>1</i>	100	4158.7	12^{+}
3798.31	12^{+}	541.3 <i>1</i>	100	3257.01 10+	5132.4		973.8 2	100	4158.7	12^{+}
3859.0		572.4 <i>3</i>	100	3286.64	5325.8	(14^{-})	832.9 2	100	4492.86	$12^{(-)}$
3963.94	11^{-}	683.7 <i>1</i>	100	3280.24 9-	5370.9	(13^{+})	842.4 11	100	4528.5	(11^{+})
4120.4	(11)	863.4 <i>3</i>	100	3257.01 10+	5608.1		897.1 4	1.0×10 ² 3	4710.9	(13)
4158.7	12^{+}	807.8 9	100	3350.89 10+			966.1 6	9.×10 ¹ 3	4642.40	14^{+}
4194.7	11-	774.5 2	100	3420.24 9-	5632.0	(15 ⁻)	854.2 2	100	4777.7	(13 ⁻)
4377.70	(11)	1026.8 2	100	3350.89 10+	5691.91	16+	1049.5 <i>1</i>	100	4642.40	14^{+}
4492.86	$12^{(-)}$	765.5 1	100	3727.35 10 ⁽⁻⁾	6225.2	(16 ⁻)	899.4 8	100	5325.8	(14 ⁻)
4528.5	(11^{+})	780.0 9	100	3748.5 (9+)	6517.3	(17^{-})	885.3 <i>3</i>	100	5632.0	(15 ⁻)
4642.40	14^{+}	844.1 <i>1</i>	100	3798.31 12+	6827.9	18^{+}	1136.0 10	100	5691.91	16^{+}
4684.3	(12^{-})	890.6 4	100	3793.69 10 ⁽⁻⁾						

[†] Weighted average from $(n,n'\gamma)$ and all decay data sets. [‡] Relative photon branching from each level. [#] Not seen. $E(\gamma)$ from level energy differences.

[@] Intensity limit from Coulomb excitation.

& From 6-min 108 Rh(β^{-}).

7

^{*a*} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^b Multiply placed with undivided intensity.

^c Placement of transition in the level scheme is uncertain.

 $^{108}_{\ 46}\mathrm{Pd}_{62}$

Level Scheme (continued)

Intensities: Type not specified

 $^{108}_{46}\text{Pd}_{62}$

 $^{108}_{\ 46}\mathrm{Pd}_{62}$

 $^{108}_{\ 46}\mathrm{Pd}_{62}$