100 Mo(11 B,p2n γ) 2005Al25

	History						
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Jean Blachot	ENSDF	1-Jul-2008				

108Pd Levels

E=43 MeV. Measured E γ , I γ , $\gamma\gamma$, $\gamma\gamma(t)$, (charged particle)- γ coin, $\gamma\gamma(\theta)$ (DCO) with the SACI-PERERE array. Light, charged particles were detected in SACI, a 4 π charged particle telescope system consisting of 11 plastic phoswich scintillators. γ -rays were detected in PERERE array consisting of 4 HPGe detectors with BGO Compton shields.

E(level) [†]	Jπ‡	E(level) [†]	Jπ‡	E(level) [†]	Jπ‡	E(level) [†]	$J^{\pi \ddagger}$
0.0 [@]	0^{+}	2529.10 25		3421.02 ^{<i>d</i>} 21	9-	4685.1 ^c 5	(12 ⁻)
434.12 [@] 9	2^{+}	2530.93 23		3424.9 4		4711.9 <i>3</i>	(13)
931.61 ^f 11	2^{+}	2549.50 [@] 17	8+	3728.13 ^a 19	$10^{(-)#}$	4778.53 ^b 23	13-
1048.62 [@] 12	4+	2671.73 ^e 24	(5 ⁺)	3748.9 ^e 4	(9 ⁺)	4977.71 [@] 24	14^{+}
1052.02 22	0^{+}	2710.26 ^{<i>a</i>} 15	6 ^{(-)#}	3790.7 ^{<i>f</i>} 3	(10^{+})	5133.5 <i>3</i>	
1335.97 <mark>8</mark> 12	3+	2762.02 ^b 15	7-	3794.5 [°] 3	$10^{(-)}$	5326.5 ^a 3	(14 ⁻) [#]
1625.01 ^{<i>f</i>} 13	4^{+}	2842.81 ^d 16	7-	3799.39 ^{&} 21	12+	5371.3 ^e 15	(13 ⁺)
1771.90 [@] 15	6+	2919.3 <mark>8</mark> 3	(7^{+})	3859.8 4		5609.2 5	
2047.8 5	3-	2954.61 ^f 17	(8 ⁺)	3964.72 ^b 21	11-	5632.7 ^b 3	15-
2084.28 ^g 16	5+	3089.66 ^c 17	8(-)	4121.5 4	(11)	5692.99 <mark>&</mark> 25	16+
2231.5 6		3101.03 ^a 16	8 ^{(-)#}	4159.71 [@] 22	12+	6225.9 ^a 9	(16 ⁻) [#]
2259.91 ^f 16	6^{+}	3111.1 ^e 3	(7^{+})	4195.5 ^d 3	11-	6518.0 ^b 5	(17 ⁻)
2283.20 18		3258.08 ^{&} 18	10^{+}	4378.8 <i>3</i>	(11)	6829.0 ^{&} 11	18^{+}
2283.83 <i>23</i>		3281.02 ^b 18	9-	4493.63 ^a 21	$12^{(-)#}$		
2325.18 ^b 15	5-	3287.42 18		4528.9 ^e 10	(11^{+})		
2472.6 5		3352.00 [@] 20	10^{+}	4643.48 ^{&} 23	14+		

[†] From least-squares fit to $E\gamma's$.

[‡] Assignments based on DCO ratio values for transitions.

Tentative negative parity assignment based on systematic of even-mass isotopes of palladium.

@ Band(A): g.s., yrast band.

[&] Band(B): 10^+ band.

^{*a*} Band(C): $\nu h_{11/2} \otimes \nu(g_{7/2}, d_{5/2}), \alpha = 0.$

^{*b*} Band(c): $\nu h_{11/2} \otimes \nu(g_{7/2}, d_{5/2}), \alpha = 1.$

^{*c*} Band(D): $vh_{11/2} \otimes v(g_{7/2}, d_{5/2}), \alpha = 0.$

^{*d*} Band(d): $vh_{11/2} \otimes v(g_{7/2}, d_{5/2}), \alpha = 1.$

^e Band(E): (5⁺) band, α =1. Tentatively based on second lowest (ν h_{11/2}) excitation.

^{*f*} Band(F): γ vibrational band, α =0.

^{*g*} Band(f): γ vibrational band, α =1.

$\gamma(^{108}\text{Pd})$

R(DCO)= $I_{\gamma}(37^{\circ})/I_{\gamma}(101^{\circ})$, where $I_{\gamma}(37^{\circ})$ and $I_{\gamma}(101^{\circ})$ represent the intensity of a transition when gating on the 101° and 37° detector axes, respectively; for gating on a stretched $\Delta J=2$ transition, R(DCO)=1.0 and 0.49 for a $\Delta J=2$ and pure $\Delta J=1$, respectively. For mixed M1+E2 transitions, R(DCO) varies with δ , with a maximum of 1.4 and minimum of 0.2 for positive and negative mixing ratios, respectively (both for |d|?1). $\Delta I=0$ transitions can give R(DCO) values between 1.1 and 0.44 for pure $\Delta J=1$ and large mixing ratios, respectively.

$100 Mo(^{11}B,p2n\gamma)$ 2005Al25 (continued)

$\gamma(^{108}\text{Pd})$ (continued)

E_{γ}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^π	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Comments
132.8.3	0.28.6	2842.81	7-	2710.26 $6^{(-)}$	
205.6.2	0.68 11	2530.93	,	$2325 18 5^{-}$	DCO=0.80.24
246.8.1	0.96.10	3089.66	8 (-)	2842 81 7 ⁻	DCO=0.42 7
258 3 1	1 15 10	3101.03	8 ⁽⁻⁾	$2842.81 7^{-}$	DCO=0.43.8
303.4.2	0.39.6	3258.08	10^{+}	2042.01 / 2954.61 (8 ⁺)	DCO=0.9.3
313.1.9	0.68 14	2084.28	5+	1771.90 6+	DCO=0.70 9
327.7.1	2.49.17	3089.66	8(-)	2762.02.7-	DCO=0.55 14
339.0.1	1 87 14	3101.03	8(-)	2762.02 7	DCO=0.58 11
373 6 14	0.20.5	3704.5	$10^{(-)}$	3421.02 0-	De0-0.30 11
385 2 1	0.20 5	2710.26	$6^{(-)}$	3+21.02 y 2325 18 5 ⁻	DCO = 0.70.15
305.21	2.70 20	2101.02	o(-)	$2323.16 \ 5$ 2710.26 $6^{(-)}$	DCO=0.10 15 DCO=0.91 20
390.7 I 404 4 I	2.52 10	1335.07	0 2+	$2710.20 \ 0^{\circ}$	DCO=0.01 20
13/ 1 <i>I</i>	122 1 10	1333.97	2+	$0.0 0^+$	DCO=0.97 15 DCO=0.97 5
4,54,1 1	122.1 10	434.12	2	0.0 0	L : from sum of intensities of transitions feeding the 2 ⁺ level
436.8.1	2 66 20	2762 02	7-	2325 18 5-	DCO=1.08.25
439.4.2	0.81.75	3111.1	(7^+)	$2525.10^{\circ}5^{\circ}$	DCO=0.85.29
407.4.1	$10.5^{\ddagger} 6$	021.61	2+	424 12 2+	$DCO = 0.83 \frac{2}{2}$
497.4 1	10.5 0	951.01	2	434.12 2	δ : $-10 < \delta < -3$ or $\delta = -0.48$ 16: the former is consistent with the
					$10 \le 10 \le 10 \le 10$ of $\delta = -0.46$ 10, the former is consistent with the
51137	2 40 27	2283 20		1771.00 6+	Known value of $0 = -5.14$ from 1 d m ENSDT.
519.0 1	713	3281.02	<u>0</u> -	2762 02 7-	DCO=1.00.18
515.01	1 42 19	2201.02	/	2762.02 7	200-1.00 10
541.2.1	1.42 10	3287.42	12+	2702.02 7	$DCO_{-1} 00 11$
541.5 1	10.0 4	3799.39	12	3238.08 10	DCO=1.09 11
5/2.4 3	0.57 11	3859.8	4+	3287.42	
578.57	2.25 23	1625.01	4 · 0=	$1048.62 4^{\circ}$	$DCO_{-1,1,4}$
578.22	0.80 14	3421.02	9 4 ⁺	2042.01 / 424.12 2 ⁺	DCO=0.005
617.0.2	100 5	1046.02	4 0+	434.12 2	DCO=0.99 5
627.1.1	3 20 21	3728 13	$10^{(-)}$	3101 03 8(-)	DCO = 0.84, 21
624.0.1	7.1 ± 4	2250.01	10 6+	1625 01 4+	DCO = 1.2.2
637.8.2	$7.1^{\circ} 4$	2239.91	(0^+)	$1023.01 \ 4$ $3111 \ 1 \ (7^+)$	DC0=1.2.5
659.0.2	0.80 15	3/40.9	0-	$2762 02 7^{-}$	DCO = 0.94.26
683 7 1	4 01 23	3964 72	11-	3281 02 9-	$DCO=0.91 \ 17$
602.2.1	7.0125	1625.01	4+	021.61 2+	DCO = 1.40.24
095.5 1	7.01 5	1023.01	4	931.01 2	DCO value for 603 + 605 peaks. Separate analysis leads to less
					reliable 1.8.3 and 1.1.3 values, respectively (authors' note)
(0 4 7 1	$a a^{\pm} a$	2054 (1	(0^{\pm})	2250.01 (+	DCO 140.24
694./ 1	3.24 3	2954.61	(81)	2259.91 6	DCO=1.49 24
					DCO value for 095+095 peaks. Separate analysis leads to less
704 8 2	1 42 15	2704 5	10(-)	$2000 \ \epsilon \ e^{(-)}$	reliable 1.6 5 and 1.1 5 values, respectively (authors hole).
704.8 2	1.45 15	3794.5	10	3089.00 8 2540.50 8 ⁺	DCO = 1.05 II
708.0 1	14.90	3238.08	10 6 ⁺	2049.00 6 1048.62 4 ⁺	DCO=0.075
725.21	13.0 25	2004.20	0 5+	1046.02 4	DC0-143
748.3 1	4.17 3	2084.28	2.	1335.97 3	DCO=1.4 3
151.2 2	1.73 20	2529.10	10(-)	$1//1.90 \ 0^{-1}$	
100.01	1.92 10	4493.03 4105 5	12''	$3/28.13 \ 10^{\circ}$	DCO=1.5.5
714.5 Z	1.45 20	4193.3	11 Q+	J+21.02 9 1771.00 6 ⁺	DCO = 1.0.0
780.0.9	0.114 0.28.12	2549.50 4528 Q	(11^+)	$3748.9 (0^+)$	
802.5.1	13 2 5	3352.00	10^{+}	2549 50 8+	DCO=0.98.10
807.7 1	5.48 28	4159.71	12+	3352.00 10+	DCO=0.97 12
813.8 7	2.11 16	4778.53	13-	3964.72 11	DCO=0.91 15
818.0 <i>I</i>	1.72 16	4977.71	14+	4159.71 12+	DCO=0.99 20
832.9 2	1.07 12	5326.5	(14 ⁻)	4493.63 12(-)	

Continued on next page (footnotes at end of table)

¹⁰⁰Mo(¹¹B,p2nγ) **2005Al25** (continued)

$\gamma(^{108}\text{Pd})$ (continued)

Eγ	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.	δ [#]	Comments
835.0 2	1.50 20	2919.3	(7^{+})	2084.28	5+			
836.3 <i>3</i>	0.57 12	3790.7	(10^{+})	2954.61	(8^{+})			
842.4 11	0.26 11	5371.3	(13^{+})	4528.9	(11^{+})			
844.1 <i>1</i>	4.95 25	4643.48	14^{+}	3799.39	12^{+}			DCO=0.93 19
847.6 4	0.82 20	2472.6		1625.01	4+			
854.2 2	0.76 11	5632.7	15^{-}	4778.53	13-			DCO=0.85 23
863.4 <i>3</i>	0.86 15	4121.5	(11)	3258.08	10^{+}			DCO=0.67 23
875.4 <i>3</i>	0.93 18	3424.9		2549.50	8+			
885.3 <i>3</i>	0.40 9	6518.0	(17^{-})	5632.7	15^{-}			
890.6 4	0.36 10	4685.1	(12^{-})	3794.5	$10^{(-)}$			
897.1 <i>4</i>	0.39 10	5609.2		4711.9	(13)			
899.4 8	0.24 13	6225.9	(16 ⁻)	5326.5	(14 ⁻)			
901.8 <i>1</i>	6.1 [‡] 5	1335.97	3+	434.12	2^{+}	M1+E2	≤-5	DCO=0.94 16
								$\delta: \delta \leq -5$ or $\delta \leq 0.2$; the latter value is less likely for positive mixing ratio.
912.5 2	0.88 13	4711.9	(13)	3799.39	12^{+}			DCO=0.65 15
931.7 2	2.1 3	931.61	2+	0.0	0^{+}			DCO=0.92 26
938.2 <i>1</i>	2.64 23	2710.26	6(-)	1771.90	6+			DCO=1.3 3
947.9 2	1.40 24	2283.83		1335.97	3+			
966.1 6	0.35 13	5609.2		4643.48	14^{+}			
973.8 2	1.02 14	5133.5		4159.71	12^{+}			
990.2 <i>1</i>	15.4 7	2762.02	7^{-}	1771.90	6+			DCO=0.53 8
1026.8 2	0.99 16	4378.8	(11)	3352.00	10^{+}			DCO=0.57 26
1049.5 <i>1</i>	1.32 13	5692.99	16^{+}	4643.48	14^{+}			DCO=0.88 23
1070.9 <i>1</i>	4.7 3	2842.81	7-	1771.90	6+			DCO=0.51 10
1136.0 10	0.41 10	6829.0	18^{+}	5692.99	16+			DCO=0.90 26
1182.9 5	0.85 25	2231.5		1048.62	4+			
1211.2 5	0.77 21	2259.91	6+	1048.62	4+			
1234.4 9	0.43 23	2283.83		1048.62	4+			
1240.7 5	0.49 16	3790.7	(10^{+})	2549.50	8+			
1276.6 <i>1</i>	9.1 6	2325.18	5-	1048.62	4+			DCO=0.58 9
1482.9 4	1.18 26	2530.93		1048.62	4+			
1613.7 5	1.2 4	2047.8	3-	434.12	2^{+}			
1623.1 2	1.00 18	2671.73	(5^{+})	1048.62	4+			

 † Obtained from 1p-gated matrix analysis.

 \ddagger R(DCO) value obtained from gating on 434 transition.

[#] Extracted by 2005A125 from DCO values by gating on 434 transition.

[@] 525 and 572 transitions seem to be incorrectly ordered in level scheme of figure 2 of 2005Al25 based upon intensity balances and level energy information in authors' table I.

¹⁰⁸₄₆Pd₆₂

0.0

$\frac{100}{100}$ Mo(11 B,p2n γ) 2005A125

 0^+

100 Mo(11 B,p2n γ) 2005A125

¹⁰⁸₄₆Pd₆₂

¹⁰⁰Mo(¹¹B,p2nγ) 2005Al25

 $^{108}_{46}\mathrm{Pd}_{62}$