¹⁰⁸Cd(**p**,**n**γ) **1989Kr07**

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Jean Blachot	ENSDF	1-Jul-2008					

1989Kr07 E=0.06.8, 7.2, 8.0, 9.0 MeV.

1978Hs01 E=0.06.5- 10 MeV. Measured I γ , σ (E), σ (θ).

1981Bu20 E=0.0 30 MeV. Measured I γ , σ (E).

Enriched, self supporting target (0.5– 5 mg cm^2).

Measured: γ , $\gamma\gamma$, ce, $\gamma(\theta)$, $\sigma(\gamma, E)$ 3 different Ge(Li), ce measured with a combined intermediate-image magnetometer plus Si(Li) or a superconducting magnetic lens spectrometer. The angular distribution was normalized with the 649 γ (1/2-9/2⁺) isomeric

transition in ¹⁰⁹In which has an isotropic angular distribution (1989Kr07).

The level scheme is that of 1989Kr07.

¹⁰⁸In Levels

E(level)	$J^{\pi \dagger}$	E(level)	$J^{\pi \dagger}$	E(level)	$J^{\pi \dagger}$	E(level)
0	7+	764.25 5	2^{-}	1178.44		1422.57
29.75 5	2^{+}	867.97 <i>5</i>	3-,2-	1183.51		1456.71
96.91 6	≥5	982.35 6	(5,6)	1191.1 <i>3</i>	1^{+}	1469.35
198.37 <i>3</i>	3+	1010.10 5	$(2,3)^+$	1212.68		1486.26
230.68 15	$(4)^+$	1028.24 5	(4,3)	1260.69		1497.89
247.68 4	$6^+,(7)^+$	1037.42 6	4,5,6	1266.46		1532.14
266.00 3	3+	1070.40 8	(4,3)	1270.47		1542.90
288.87 <i>3</i>	$(5)^{+}$	1086.15 22	$(4,5,6)^+$	1294.03		1555.56
302.51 3	2^{+}	1094.83 15	1,2,3	1309.71		1562.97
481.57 <i>3</i>	4+	1109.82 10	2,3,4	1314.90		1590.30
598.45 <i>4</i>	$5^+,(6)^+$	1113.85 7	1,2,3	1358.11		1612.04
632.96 4	$4^+, 5^+$	1114.35		1401.48		1629.72
681.62 5	$5^+,(6)^+$	1158.75 <i>10</i>	2,3,4	1410.85		
698.9 <i>3</i>	1+	1166.94		1415.74		

 † From γ multipolarities, Hauser-Feshbach analysis; see Adopted Levels for comments.

$\gamma(^{108}\text{In})$

 α (K)exp: are normalized using the theoretical M1 value for the 169 γ (1989Kr07).

Eγ	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^{π}	Mult.	δ#	Comments
32.31 15		230.68	$(4)^+$	198.37	3+			
36.52 8	8 2	302.51	2+	266.00	3+			
41.17 5	53	288.87	$(5)^{+}$	247.68	$6^+,(7)^+$			
58.18 <i>3</i>	20.5 23	288.87	$(5)^{+}$	230.68	$(4)^+$			
96.91 6	1	96.91	≥5	0	7+			
104.15 <i>3</i>	207 4	302.51	2+	198.37	3+	D+Q	-0.06 10	
116.90 6	5.7 8	598.45	$5^+,(6)^+$	481.57	4+			
150.76 10	8.6 12	247.68	$6^+,(7)^+$	96.91	≥5			
168.62 <i>3</i>	1000 74	198.37	3+	29.75	2+	M1		α (K)exp=0.103
								Mult.: from adopted γ 's. δ =+0.07 6
								from $\gamma(\theta)$.
215.57 4	101 9	481.57	4+	266.00	3+	M1(+E2)	+0.024	α (K)exp=0.058 10
218.05 6	6.1 9	1401.48		1183.51				
^x 227.71 13	0.5 1							
236.25 <i>3</i>	917 <i>41</i>	266.00	3+	29.75	2+	M1+E2	+0.07 3	α (K)exp=0.042 7

Continued on next page (footnotes at end of table)

¹⁰⁸Cd(p,nγ) **1989Kr07** (continued)

γ ⁽¹⁰⁸In) (continued)</sup>

E_{γ}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	δ #	Comments
245.91 10	3.1 4	1113.85	1,2,3	867.97 3 ⁻ ,2 ⁻			
247.68 4	89 4	247.68	$6^+,(7)^+$	0 7+	M1,E2		$\alpha(K) \exp = 0.041 \ 14$
272.75 3	690 9	302.51	2+	29.75 2+	M1(+E2)	+0.14 14	α (K)exp=0.033 7
283.20 4	45 5	481.57	4+	198.37 3+	M1(+E2)	+0.09 10	α (K)exp=0.023 7
291.74 10	193	1401.48	(1,2)	1109.82 2,3,4			
300.07 19	0.2 /	10/0.40	(4,5)	/04.25 2			
319.43 10	2.5 5	1400.20		1100.94			
344 08 10	$10.1 \ 10$ 23 7 20	632.06	A+ 5+	$288.87(5)^+$	M1 E2		$\alpha(K) = 0.019.7$
350 75 5	32.2.18	598 45	$5^{+}(6)^{+}$	$247.68.6^+(7)^+$	M1+E2	+0.12.9	$\alpha(K)\exp=0.0197$
366.94 6	44.9.25	632.96	$4^+.5^+$	$266.00 3^+$	M1+E2	+0.127	$\alpha(K) \exp = 0.0136 24$
377.17 10	2.2.2	1010.10	$(2.3)^+$	$632.96 \ 4^+.5^+$			
391.48 10	10.7 21	1401.48	(_,_)	$1010.10 (2.3)^+$			
396.06 16	28.0 16	1094.83	1,2,3	698.9 1+			
396.44 <i>3</i>	292 10	698.9	1+	302.51 2+	M1(+E2)		$\alpha(K) \exp = 0.0107 \ 18. \ \delta = 0.0 + 5 - \infty.$
402.69 4	106 10	1166.94		764.25 2-			
414.21 6	44.1 25	1178.44		764.25 2-			
414.90 10	12.4 7	1113.85	1,2,3	698.9 1+			
433.99 5	8.8 5	681.62	$5^+,(6)^+$	$247.68 6^+,(7)^+$	M1,E2		$\alpha(K) \exp \approx 0.0094$
434.56 5	6.9 4	632.96	4+,5+	198.37 3+	M1,E2		$\alpha(\mathbf{K})\exp\approx 0.0094$
450.89 4	16.9 10	681.62	$5^+,(6)^+$	$230.68 (4)^+$	M1,E2		α (K)exp=0.007 2
477.08 23	1.4 2	1109.82	2,3,4	632.96 4,5			
484.56 5	30.4 18	1183.51	1+	698.9 I ⁺			
492.63 3	46 3	1191.1	2-	698.9 1 ⁺	E1		$\alpha(K) = 0.0010.2$ S=0.00.11 from
498.29 3	320 20	704.25	2	200.00 3	EI		$\alpha(\mathbf{K})\exp=0.0019$ 5. $\sigma=0.00$ 11 from $\gamma(\sigma)$.
500.5 2	<5	698.9	1+	198.37 3+			
500.78 6	6.5 5	982.35	(5,6)	481.57 4+			
502.21 9	18.1 12	1266.46	(2, 2) +	764.25 2			
528.56 10	4.0 3	1010.10	$(2,3)^{+}$	481.57 4			
550 70 5	11.5 12 54 10	1028.24	(4,5)	461.37 4			
555 82 12	34 10	1037.42	456	704.23 2 481 57 4 ⁺			
565 44 5	66 5	867.97	$3^{-} 2^{-}$	302512^+	F1		$\alpha(\mathbf{K}) \exp \sim 0.0014$
565.88 5	75.5	764.25	2-,2	198.37 3+	E1		$\alpha(\mathbf{K})\exp \approx 0.0014$
x502.06 [‡] 10	242		-				a()
601 34 15	406	1469 35		867 97 3-2-			
601.85.9	4.0 4	867.97	32-	$266.00 3^+$			
610.84 9	27.5 21	1309.71	U ,2	698.9 1 ⁺			
627.81 10	2.1 2	1260.69		632.96 4+,5+			
628.31 6	15.2 12	1109.82	2,3,4	481.57 4+			
637.49 12	1.6 2	1270.47		632.96 4+,5+			
651.44 12	33.0 25	1415.74		764.25 2-			
669.08 10	86 11	698.9	1^{+}	29.75 2+	M1,E2		α (K)exp \approx 0.0032
669.64 5	25 2	867.97	3-,2-	198.37 3+			
672.15 7	5.7 6	1270.47		598.45 5+,(6)+			
677.09 25	3.1 3	1158.75	2,3,4	481.57 4+			
095.58 11	2.6 3	1294.03		$598.45 5^{+},(6)^{+}$			
125.24 9	5./4	1338.11		032.90 4',5'			
133.11.20	9.4 9 67 9	1497.89	2-	/04.23 Z 20.75 2 ⁺			
744.00 5	20 3 12	1010 10	$(2 3)^{+}$	29.13 2	M1 F2		$\alpha(K) \exp{-0.0025} 5 \delta_{-\pm} 0.07 \pm \infty 25$
758 1 3	20.3 12 9 7 7	1456 71	(2,3)	200.00 <i>3</i> 698.9 1 ⁺	1011,62		$u(\mathbf{x}) = 0.0023 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
761.8 3	2.6.7	1629 72		867.97 3-2-			
762.20 5	18.4 11	1028.24	(4,3)	266.00 3+			

Continued on next page (footnotes at end of table)

¹⁰⁸Cd(p,n γ) 1989Kr07 (continued) $\gamma(^{108}\text{In})$ (continued) I_{γ}^{\dagger} Eγ E_i (level) \mathbf{J}_i^{π} J_{f}^{π} Mult. Comments \mathbf{E}_{f} 1070.40 (4,3)302.51 2+ 767.87 8 16.0 10 779.01 17 4.0 4 1260.69 481.57 4+ 2.1 3 481.57 4+ 788.7 3 1270.47 789.76 6 5.841037.42 4,5,6 247.68 6+,(7)+ 792.19 5 23.0 14 1094.83 1,2,3 302.51 2+ 266.00 3+ 804.39 5 25 4 1070.40 (4,3) 807.43 14 302.51 2+ 26.2 1109.82 2,3,4 811.30 5 84 *3* 1113.85 1,2,3 302.51 2+ ^x816.68[‡] 10 3.1 4 266.00 3+ 828.69 5 14.6 9 1094.83 1,2,3 829.77 12 198.37 3+ 1.9 2 1028.24 (4,3)247.68 6+,(7)+ 838.47 12 3.2 3 1086.15 $(4,5,6)^+$ M1,E2 $\alpha(K) \exp = 0.0019 9$ 843.82 5 29 2 1109.82 2,3,4 266.00 3+ 1^{+} 844.27 6 21.3 13 1542.90 698.9 847.85 10 764.25 2-28.1 15 1612.04 847.90 10 28 2 1113.85 1,2,3 266.00 3+ E_{γ} : this transition is not given in the authors' table but is shown in their level scheme. I_{γ}: I γ deduced from I γ /I γ (811.3 γ)=0.033 2 in authors' level scheme. 856.17 9 10.0 7 302.51 2+ 1158.75 2,3,4 ^x861.46 6 13.8 8 1^{+} 4.8 5 698.9 864.15 10 1562.97 198.37 3+ 872.15 13 $2.6\ 2$ 1070.40 (4,3)881.03 10 71 4 1183.51 302.51 2+ 1^{+} 888.97 5 66 4 302.51 2+ 1191.1 266.00 3+ 892.72 7 8.2 6 1158.75 2,3,4 $4.5 \ 4$ 1094.83 1,2,3 198.37 3+ 896.64 7 x902.23 10 7.3 5 1109.82 2,3,4 198.37 3+ 911.36 10 7.3 5 x915.32[‡] 10 3.0 3 916.03 7 198.37 3+ 16.6 16 1114.35 ^x918.07[‡] 5 16.1 11 925.24 6 9.4 6 1191.1 1^{+} 266.00 3+ 698.9 1+ 930.73 7 7.96 1629.72 481.57 4+ 941.00 10 3.1 4 1422.57 946.81 9 266.00 3+ 4.7 4 1212.68 302.51 2+ 958.18 11 8.16 1260.69 960.19 17 11.7 8 1158.75 2,3,4 198.37 3+ 20.7 12 302.51 2+ 963.96 12 1266.46 ^x975.73 9 6.2 5 1178.44 198.37 3+ 980.0 3 1.0 2 980.32 5 29.75 2+ α (K)exp=0.0013 4. 0.16 $\leq \delta \leq 4.0$. 74 4 1010.10 $(2,3)^+$ M1+E2 198.37 3+ 985.3 *3* 3.1 4 1183.51 0.9 2 1^{+} 198.37 3+ 992.9*3* 1191.1 994.70 5 21.1 12 1260.69 266.00 3+ 18.0 13 302.51 2+ 1007.30 6 1309.71 ^x1007.40[‡] 9 7.2 5 ^x1011.9[‡] 2 6.06 1014.17 9 15.0 10 1212.68 198.37 3+ 1043.53 14 2.3 2 1309.71 266.00 3+ 1048.85 12 3.1 3 1314.90 266.00 3+ 14.5 9 302.51 2+ 1055.66 9 1358.11 29.75 2+ 1065.01 10 33 5 1094.83 1,2,3 1079.97 10 11.6 9 29.75 2+ 1109.82 2,3,4 29.75 2+ 1084.5 3 19 4 1114.35

Continued on next page (footnotes at end of table)

	108 Cd(p,n γ) 1989Kr07 (continued)									
		γ ⁽¹⁰⁸ In) (continued)								
E_{γ}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	E_{γ}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}
1091.96 8	6.8 5	1358.11	_	266.00 3+	1203.00 6	17.1 10	1401.48	_	198.37	3+
1108.42 16	7.5 7	1410.85		302.51 2+	1217.61 19	3.4 4	1415.74		198.37	3+
1111.34 11	10.2 7	1309.71		198.37 3+	1229.52 12	5.2 7	1532.14		302.51	2^{+}
^x 1129.63 [‡] 17	6.8 12				1240.27 11	7.2 7	1542.90		302.51	2^{+}
1135.38 9	9.9 8	1401.48		266.00 3+	1253.16 10	10.0 7	1555.56		302.51	2^{+}
1144.77 15	9.3 4	1410.85		266.00 3+	1258.3 4	1.3 4	1456.71		198.37	3+
1149.67 10	4.3 4	1415.74		266.00 3+	1260.34 6	48 <i>3</i>	1562.97		302.51	2^{+}
1153.9 2	22 11	1183.51		29.75 2+	1266.25 25	<5	1532.14		266.00	3+
1154.25 10	7.6 6	1456.71		302.51 2+	1276.74 6	20.1 12	1542.90		266.00	3+
1161.8 <i>3</i>	49 <i>3</i>	1191.1	1^{+}	$29.75 \ 2^+$	1287.79 15	2.6 5	1590.30		302.51	2^{+}
1166.85 9	10.4 7	1469.35		302.51 2+	1289.46 22	1.9 2	1555.56		266.00	3+
1183.64 17	13.4 9	1486.26		302.51 2+	1309.49 14	≈6	1612.04		302.51	2^{+}

[†] From 1989Kr07 at E(p)=0.0 8 MeV. [‡] Indicated in author's table as being placed in the level scheme but not shown in the level scheme drawing. [#] From $\gamma(\theta)$ (1989Kr07). ^x γ ray not placed in level scheme.

 $^{108}_{\ 49} \mathrm{In}_{59}$

¹⁰⁸Cd(p,nγ) 1989Kr07

 $^{108}_{\ 49} \mathrm{In}_{59}$

 $^{108}_{\ 49} \mathrm{In}_{59}$

¹⁰⁸Cd(p,nγ) 1989Kr07

¹⁰⁸₄₉In₅₉

1989Kr07

9