History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	Jean Blachot	ENSDF	1-Jul-2008						

 100 Mo(12 C,4n), E= 54 MeV, 1994Th01.

⁹⁶Zr(¹⁶O,4nγ), E=74,75 MeV, 1993Th05 (1993Th05 and 1994Th01 are same group).

Coincident gamma-ray events were collected with the NORDBALL multi-detector array consisting of up to 20 Compton-suppressed Ge detectors. The Ge detectors are situated in four rings at angles of θ =37°, 79°, 101° and 143° relative to the beam direction, with five detector positions in each ring, and with a distance of 19 cm from target to detector. Two experiments were performed, namely a thin target experiment and a backed target experiment. In the thin target experiment a stack of two self-supporting ⁹⁶Zr foils (85% enrichment), each with a thickness of 0.92 mg/cm² was used. The beam energy was 74 MeV with a beam current of 4 pnA. All 20 Compton-suppressed Ge detectors were used, and about 280 million gamma-gamma-coincidences were collected. The backed target experiment used a 0.74 mg/cm² thick ⁹⁶Zr foil (85% enrichment) with a 6.2 mg/cm² thick ¹⁹⁷Au backing. The beam energy was 75 MeV with a beam current of 3.5 pnA. Nineteen Compton-suppressed Ge detectors were used and 440 million gamma-gamma-coincidences were collected. NORDBALL is also equipped with a BaF2 inner ball, allowing for measurements of the sum-energy and the gamma-ray multiplicity. In the two experiments 10 and 39 BaF2-detectors were used, respectively. ⁹⁶Zr(¹⁶O.4n\gamma), E= 56 MeV, 1978Sa13.

Authors measured γ excitation functions, γ angular distributions, $\gamma\gamma$ -coincidences and γ -linear polarizations. The $\gamma\gamma$ -coincidence measurements were used to sort the members of unresolved multiplets. δ for the γ -transitions were determined from the $\gamma(\theta)$ measurements. Multipolarities of the transitions were determined from the linear polarization measurements. In addition, the $\gamma\gamma$ -coincidence measurements were used to deduce δ and multipolarity for transitions that are part of an unresolved multiplet. The evaluators consider results from this technique to be less certain than those from the $\gamma(\theta)$ or γ -linear polarization measurements. The γ -linear polarization measurements are discussed in detail in 1978St01.

Other (HI,xny) measurements: 96 Zr(16 O,4ny) (1971CoZS), 104 Pd(α ,2ny) and 106 Pd(α ,4ny) (1969HaZU).

E(level)	$J^{\pi \dagger}$	T _{1/2} ‡	Comments
0	0^{+}		
632.92 ^e 5	2^{+}	7.0 ps 6	
1508.39 ^e 7	4+	<3.5 ps	
2239.41 ^h 20	4+		
2541.27 ^e 9	6+		
2545.32 22	(4^{+})		
2565.10 15	5+	0.2 [#] ns 1	
2601.55 9	5-		
2706.94 9	5-		
2807.91 16	6+		
2975.30 ^a 10	6-	0.15 [#] ns <i>10</i>	
2994.29 ^h 18	(6^{+})		
3057.46 ^{&} 9	7-	31 ps 24	$T_{1/2}$: other: 100 ps 50 (1985An27).
3110.41 12	8+	0.3 [#] ns 1	
3189.9 4	$(6,7,8)^+$		
3223.73 ^a 10	8-	0.49 ns 14	$T_{1/2}$: other: 0.2 ns <i>I</i> (1985An27).
3248.54 14	7-		
3474.40 [@] 13	8-		
3485.11 ^{&} 10	9-	47.1 ps 21	$T_{1/2}$: other: <100 ps (1985An27).
3683.22 ^e 11	8+		
3737.43 ^b 10	9-	6.2 ps 7	$T_{1/2}$: other: 200 ps 100 (1985An27).
3860.90 ^h 14	8+		
3872.18 ^a 13	10-	5.75 ps 21	
4152.64 ^e 11	10+	35.4 ps 21	

¹⁰⁸Cd Levels

Continued on next page (footnotes at end of table)

				¹⁰⁸ Cd Levels (continued)
E(level)	J^{π}	T _{1/2} ‡	E(level)	$J^{\pi \dagger}$
4188.11 ^{&} 11	11-	3.60 ps 14	7383.4 ^g 3	(16)
4196.38 [@] 19	10-	5.5 ps 14	7386.0 [@] 3	16-
4568.57 <mark>b</mark> 16	11-	1.66 ps 21	7528.9 ^c 4	(16 ⁻)
4618.2 10	$(9,10^{+})$	I I I	7564.2 ^e 4	18+
4708.75 ^e 13	12^{+}	10.1 ps 3	7725.3 <mark>&</mark> 5	17-
4755.70 ^f 22	10^{+}		7740.7 ^C 4	17-
4826.04 ^a 19	12-	1.11 ps 7	7862.2 ^d 11	(16)
5124.96 [@] 20	12-	2.1 ps 3	7913.3 ^{<i>f</i>} 4	(18^{+})
5179.88 ^{&} 17	13-	0.69 ps 7	8102.2 ^C 4	18-
5502.58 ^e 14	14+	1.52 ps 7	8185.5 ^d 11	(17)
5574.20 ^b 21	13-		8283.9 [@] 4	18-
5588.9 ^c 11	11-		8534.9 <mark>8</mark> 5	(18)
5591.78 ^f 18	12^{+}		8544.2 ^d 11	(18)
5639.44 ^c 16	12-		8584.7 [°] 5	19-
5760.56 ^c 19	13-		8671.0 ^{&} 5	19-
5837.50 ^g 25	(12)		8824.5 ^e 5	(20^{+})
5982.4 ^a 3	14^{-}		8965.0 ^d 11	(19)
6076.61 [°] 23	14-	<2 ps	9174.9 ^c 5	(20 ⁻)
6124.32 ^J 18	14^{+}		9326.0 [@] 5	(20 ⁻)
6251.53 [@] 25	14-		9757.3 ^{&} 6	(21 ⁻)
6404.1 ^{&} 4	15-		9879.4 ^C 6	(21 ⁻)
6458.88 ^e 25	16+	<1.4 ps	9894.3 <mark>8</mark> 6	(20)
6487.99 <mark>8</mark> 22	(14)		10293.6 ^e 6	(22^{+})
6598.5 ^c 3	15-	<2 ps	10532.7 [@] 6	(22 ⁻)
6891.04 ^f 23	16+		11018.5 <mark>&</mark> 7	(23 ⁻)
7212.7 ^{<i>a</i>} 5	(16 ⁻)		11906.7 [@] 7	(24 ⁻)
7213.9 ^c 4	(15 ⁻)		11914.8 ^e 7	(24^{+})
7275.3 [°] 4	16-		12489.2 <mark>&</mark> 8	(25 ⁻)

 $(HI,xn\gamma)$

[†] Values are from γ multipolarities. [‡] From Doppler-shift recoil-distance method in (HI,xn γ) (1994Th01), except where noted otherwise.

[#] From centroid shift measurement (1985An27).

[@] Band(A): band 1.

- & Band(B): band 2.
- ^{*a*} Band(C): band 3.
- ^b Band(D): band 4.
- ^c Band(E): band 5.
- ^d Band(F): band 6.
- ^e Band(G): band 7.
- f Band(H): band 8.
- ^g Band(I): band 9.
- ^h Band(J): band 10.

1994Th01,1993Th05,1978Sa13 (continued)

(HI,xnγ) 1994Th01,1993Th05,1978Sa13 (continued)

$\gamma(^{108}\text{Cd})$

${\rm E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	δ	Comments
116.4	12.2	3110.41	8+	2994.29	(6^+)	D		
$121.2 \ 10$	43 2	5760.56	13- 5-	5639.44	12^{-}	D		
$101.00^{-2} 20$	11.0 ⁻⁰ 15	2700.94	5 0-	2057.46	(4^{+})	M1 + E2	0 195 15	$P(M1)(W_{11}) = 0.0060.21$
100.25 5	200 14	5225.15	0	5057.40	1	W11+E2	+0.165 15	B(M1)(W.u.)=0.0009 21, B(E2)(W.u.)=7.2 24
177.6 10	1.8 3	3860.90	8+	3683.22	8+	D		
186.4 10	3.0 4	5760.56	13-	5574.20	13-	D		
211.7 10	95	5248.54 7740.7	/ 17 ⁻	5057.40 7528.9	(16^{-})	D+Q D		
225.87 [#] 7	14 1	3474.40	8-	3248.54	(10) 7 ⁻	D+0	-0.14 11	
242.84 [#] 7	d	2807.91	6+	2565.10	5+	D+0	-0.04 6	
248.49 ^{#@} 8	105 6	3223.73	8-	2975.30	6-			
261.49 [#] 17	169 9	3485.11	9-	3223.73	8-	M1+E2		$\delta: 0.06 \ 3 \text{ or } \ge 20.$
268.39 ^{#@} 20	32 2	2975.30	6-	2706.94	5-	D+Q		δ: 0.40 13 or 4.2 18.
280.3 10	15 <i>1</i>	4152.64	10+	3872.18	10-	D+Q		
291.9 <i>10</i>	52 5	4152.64	10+	3860.90	8-	Q		
302.79" 25	5.3 ⁴⁴ 10 74 5	3110.41 6076.61	8' 14 ⁻	2807.91	0' 13 ⁻	D		
323.3 10	<21	8185.5	(17)	7862.2	(16)	D		
325.5 [#] 4	С	2565.10	5+	2239.41	4+			
350.52 [#] 5	174 9	3057.46	7-	2706.94	5-	E2		B(E2)(W.u.)=3.E+1 3
358.7 10	<27	8544.2	(18)	8185.5	(17)	D		
361.5 <i>10</i>	32.2	8102.2	18-	7740.7	17-	D	0.54.4	
3/3.77" 5	93 5	2975.30	6-	2601.55	5-	M1+E2	+0.56 6	B(M1)(W.u.)=0.0015 <i>10</i> ; B(E2)(W.u.)=2.8 <i>20</i>
414.97 ^{#@} 20	155 10	4152.64	10^{+}	3737.43	9-	E1		B(E1)(W.u.)= $3.5 \times 10^{-5} 4$ δ : + 0.02 7.
416.96 [#] 10	42 3	3474.40	8-	3057.46	7-	D+Q		δ: - 0.31 16 or - 2.6 10.
420.8 10	<15	8965.0	(19)	8544.2	(18)			
427.64# 5	125 6	3485.11	9-	3057.46	7-	E2		B(E2)(W.u.)=11.7 9
433.7 [#] 4	9.0 13	2975.30	6-	2541.27	6 ⁺	Q		
455.89" 5	286 14	3057.46	10-	2601.55	5 ⁻ 0-	E2 E2 M1		B(E2)(W.u.)=14 <i>12</i>
459.4 2	20 4	5639.44	$10^{-10^{-10^{-10^{-10^{-10^{-10^{-10^{-$	5179.88	13-	D+Q		
465.5 10	18 <i>1</i>	7740.7	17-	7275.3	16-	D		
469.42 [#] 5	165 10	4152.64	10^{+}	3683.22	8+	E2		B(E2)(W.u.)=7.3 7
482.5 10	26 5	8584.7	19-	8102.2	18-	D		
498.5# <i>3</i>	15.2	3474.40	8-	2975.30	6-	Q		
514.2" 5	101 8	3/3/.43 5639.44	9 12-	3223.73 5124.96	8 12 ⁻			
$516.15^{\#}$ 7	144 8	3057.46	7-	2541 27	6 ⁺	E1		$B(E1)(W_{11}) = 1.7 \times 10^{-5} I_3$
010110 /	1110	2027110		2011127	0	21		$\delta: \delta(M2/E1) = + 0.004 \ I2.$
521.9 10	62 4	6598.5	15-	6076.61	14-	M1		B(M1)(W.u.)>0.077
526.9 <i>10</i>	11 <i>1</i> 32 2	7740.7	17^{-} 14^{+}	7213.9	(15^{-}) 12^{+}	Q		
$556.08^{\#}$ 7	32 2 166 23	0124.32 4708 75	14 12 ⁺	JJ91./8	12^{+} 10^{+}	Ч F2		$B(E2)(W_{11}) = 34.5.11$
$x_{563,34}^{\#}$ 25	+00 23	+/00.75	12	4132.04	10	E2		D(E2)(W.U.) - J4.J II
569 31 ^{#@} 10	70.4	3110.41	8+	2541 27	6+	F2		$B(F2)(W_{11}) = 1.0.4$
573.1 10	15 1	3683.22	8+	3110.41	8+	D		$D(D2)(m,u,j=1,0,\tau)$
590.2 10	<5	9174.9	(20 ⁻)	8584.7	19-			

		((HI,xny)	1994Th0	1,1993Th	ied)		
			γ ⁽¹⁰⁸ Cd) (continued)			tinued)		
${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult. [‡]	δ	Comments
615.4 10	28 3	7213.9	(15 ⁻)	6598.5	15-	D,Q		
621.6 <i>10</i>	12 <i>I</i>	6124.32	14+	5502.58	14^{+}	D+Q		
632.92 [#] 5	1000 50	632.92	2+	0	0^{+}	E2		B(E2)(W.u.)=26.1 23
648.44 [#] 10	158 8	3872.18	10-	3223.73	8-	E2		B(E2)(W.u.)=28.1 11
648.6 # 4	50.4	3189.9	$(6,7,8)^+$	2541.27	6^+	E2		
$650.6\ 10$	59 4	6487.99	(14)	2495.11	(12)	Q E1		$P(T_1)(W_1) = 7 + 10^{-6} + 9$
667.49" 10	129 10	4152.64	10.	3485.11	9	EI		$B(E1)(W.u.) = 7.1 \times 10^{-6} 8$ $\delta: + 0.09 14.$
676.9 10	32 2	7275.3	16-	6598.5	15-	D		
679.91 [#] 5	101 8	3737.43	9-	3057.46	7-	E2		B(E2)(W.u.)=10.3 16
696.5 <i>10</i>	11.5 12	4568.57	11-	3872.18	10-	M1,E2		
703.00" 5	182 10	4188.11	11^{-}	3485.11	9^{-}	E2		B(E2)(W.u.)=30.0 12
704.5 2	34.2	9879.4 3248.54	(21) 7 ⁻	2541.27	(20) 6^+	D		
721.7 10	44 4	4196.38	10-	3474.40	8-	E2		B(E2)(W.u.)=12 4
730.83 [#] 25	10.7 <mark>b</mark> 15	2239.41	4+	1508.39	4+			
748.1 10	5 1	5574.20	13-	4826.04	12-	D+Q		
750.6 10	13 3	3860.90	8+	3110.41	8+	D		
754.7 ** 3 766 7 10	31	2994.29	(6^+) 16 ⁺	2239.41	4^+ 14 ⁺	Q		
700.7 10 702 80 [#] 7	44 J 250 18	5502.58	10	4709 75	14 12 ⁺	Q E2		$P(E2)(W_{11}) = 28.7.18$
831.0 10	46.3	4568.57	14 11 ⁻	3737.43	12 9 ⁻	E2 E2		B(E2)(W.u.)=38.7.78 B(E2)(W.u.)=23.4
836.0 10	16 2	5591.78	12^{+}	4755.70	10+	Q		
866.7 10	12 <i>I</i>	3860.90	8+	2994.29	(6^{+})	Q		
875.46 [#] 5	1000	1508.39	4 ⁺	632.92	2^+	E2		B(E2)(W.u.)>10
883.0 10	12 1	5591.78	121	4708.75	121	D		
*886.02" 20 895 4 10	62.4	7383 4	(16)	6487 99	(14)	0		
897.9 10	45 3	8283.9	18-	7386.0	16-	õ		
928.5 10	55 <i>3</i>	5124.96	12-	4196.38	10-	E2		B(E2)(W.u.)=12.8 19
930.2 10	10.0 12	7528.9	(16^{-})	6598.5	15-	D,Q		
934.4 10 945 7 10	9 I 36 2	5/60.56 8671.0	13 10 ⁻	4826.04	$12 \\ 17^{-}$	D,Q O		
$953.64^{\#@} 25$	107.6	4826.04	12-	3872.18	10-	(F2)		$B(F2)(W_{H}) = 21.2.14$
956.3 2	216 11	6458.88	16 ⁺	5502.58	10^{-10}	E2		B(E2)(W.u.) > 17
^x 963.26 [#] 25								E_{γ} : placed by 1978Sa13 feeding the 5503 level. This transition has $E\gamma$ =956.3 in 1993Th05.
970.7 10	17 <i>1</i>	5588.9	11-	4618.2	(9,10 ⁺)	D		
985.3 10	22 2	6487.99	(14)	5502.58	14+	D		
991.66 [#] <i>15</i>	116 6	5179.88	13-	4188.11	11-	(E2)		B(E2)(W.u.)=28 3
1005.8 10	28 2	5574.20 7913 3	(18^+)	4308.37	$11 \\ 16^+$	Q		
$1032.85^{\#}$ 7	422 21	2541.27	6 ⁺	1508.39	4 ⁺	E2		
$1038.0^{\#}$ 10		2545.32	(4 ⁺)	1508.39	4+			
1042.1 10	<20	9326.0	(20 ⁻)	8283.9	18-	Q		
1043.2 10	2 1	4152.64	10+	3110.41	8+	E2		B(E2)(W.u.)=0.0016 9
1056.83 [#] 15	C	2565.10	5 ⁺	1508.39	4^+	D+(Q)	+0.08 8	
10/0./ 10	14.0 <i>14</i> 22 2	3639.44 4755 70	12 10 ⁺	4568.57	11 8 ⁺	D+Q 0		
1086.3 10	<15	9757.3	(21-)	8671.0	19-	Q		

Continued on next page (footnotes at end of table)

			(HI,xnγ)	1994Th01,1993Th05,1978Sa13 (continued					
				γ	(¹⁰⁸ Cd)	(continued)			
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	δ		
1093.13 [#] 7	371 19	2601.55	5-	1508.39	4+	E1+M2	-0.038 18		
1105.3 10	81 5	7564.2	18^{+}	6458.88	16+	Q			
1126.6 10	17 2	6251.53	14-	5124.96	12-	Q			
1129.0 10	43 <i>3</i>	5837.50	(12)	4708.75	12^{+}	D+Q			
1134.5 10	18 2	7386.0	16-	6251.53	14-	Q			
1141.85 [#] 10	167 9	3683.22	8+	2541.27	6+	E2			
1151.5 <i>10</i>	19.0 12	8534.9	(18)	7383.4	(16)	Q			
1156.3 10	46 <i>3</i>	5982.4	14-	4826.04	12-	Q			
1191.9 <i>3</i>	3 1	5760.56	13-	4568.57	11-	Q			
1198.54 [#] 7	190 10	2706.94	5-	1508.39	4+	E1+M2	-0.050 16		
1206.7 <i>3</i>		10532.7	(22^{-})	9326.0	(20^{-})				
1224.2 10	73 4	6404.1	15-	5179.88	13-	Q			
1230.3 <i>3</i>		7212.7	(16 ⁻)	5982.4	14-				
1250.6 10	10 <i>I</i>	6076.61	14-	4826.04	12-	Q			
1260.3 10	<32	8824.5	(20^{+})	7564.2	18^{+}				
1261.2 3	,	11018.5	(23^{-})	9757.3	(21^{-})				
1299.5 [#] 10	d	2807.91	6+	1508.39	4+				
1309.3 10	11 2	7386.0	16-	6076.61	14-	Q			
1319.7 10	<9	3860.90	8+	2541.27	6+				
1321.2 10	40 3	7725.3	17-	6404.1	15-	Q			
1359.4 3		9894.3	(20)	8534.9	(18)				
1374.0 3		11906.7	(24 ⁻)	10532.7	(22^{-})	0			
1388.5 10	71	6891.04	16	5502.58	14+	Q			
1403.3	-9	/862.2	(16)	6458.88	10				
1403.6 10	<8	/386.0	10	3982.4	14 12 ⁺	0			
1415.5 10	13 1	0124.32	14	4/08./5	12	Q			
1425.5 10	10 1	0201.00	14 12+	4820.04	12	Q			
1459.7 10	71	5630 44	12	4152.04	10				
1451.9 10	/ 1	10293.6	(22^+)	8824.5	(20^{+})	D∓Q			
1470 7 3		12489 2	(22^{-})	11018 5	(20^{-})				
1486.3 10	17 /	2994.29	(23)	1508.39	(25)	0			
$1507.8^{\#}$ 10	19.0 11	4618.2	(9.10^{+})	3110.41	8+	Č			
1606 0 ^{#@} 15	10.0.13	2230 /1	(),10) /+	632.02	2+	×			
1621.2.3	10.0 15	11914 8	(24^+)	10293.6	(22^{+})				
1767.6.10	31	5639 44	12-	3872.18	10-	0			
1,01.010	51	5057.44	14	5072.10	10	X			

[†] From 1993Th05, unless otherwise noted. Uncertainties in $E\gamma$ are stated to range from 0.2 to 1.0. I γ are also given by 1978Sa13.

[±] From 1994Th01 (DCO) and 1978Sa13 $\gamma(\theta)$, γ (polarization) and α (K)exp.

From 1978Sa13.

[@] Doublet.

[&] From $I\gamma/I\gamma(1199\gamma)=0.058$ 7 (1978Sa13).

^{*a*} From $I\gamma/I\gamma(569\gamma)=0.076\ 13\ (1978Sa13)$.

^b From $I\gamma/I\gamma(1606\gamma)=1.07$ 5 in adopted γ 's.

^c $I\gamma(325.5\gamma)/I\gamma(1056.83\gamma)=0.53$ 9 (1978Sa13).

^{*d*} $I\gamma(1299.5\gamma)/I\gamma(242.84\gamma)=0.45$ 13 (1978Sa13).

 $x \gamma$ ray not placed in level scheme.

 $^{108}_{48}\mathrm{Cd}_{60}$

7

 $^{108}_{48}\mathrm{Cd}_{60}$

 $^{108}_{48}\mathrm{Cd}_{60}$

 $^{108}_{48}\mathrm{Cd}_{60}$

$(HI,xn\gamma) \qquad 1994 Th01,1993 Th05,1978 Sa13 \ (continued)$

 $^{108}_{\ 48}\mathrm{Cd}_{60}$

(HI,xnγ) 1994Th01,1993Th05,1978Sa13 (continued)

 $^{108}_{48}\mathrm{Cd}_{60}$