¹⁰⁸In ε decay (39.6 min) 1975Fl01,1984Ro10

History										
Туре	Author	Citation	Literature Cutoff Date							
Full Evaluation	Jean Blachot	ENSDF	1-Jul-2008							

Parent: ¹⁰⁸In: E=29.75 5; $J^{\pi}=2^+$; $T_{1/2}=39.6 \text{ min } 7$; $Q(\varepsilon)=5137 9$; $\%\varepsilon+\%\beta^+$ decay=100.0 ¹⁰⁸In- $Q(\varepsilon)$: $Q(g.s.)=5149 \ 14 \ (1986Bo28)$.

The decay scheme, $E\gamma$, $I\gamma$, and $\gamma\gamma$ -coincidence relations are those measured by 1975Fl01. Other measurements: 1962Ka23, 1963Ka18, 1970Di13 and 1984Ro10.

Many unplaced transitions reported by 1984Ro10 are given in the 58.0-min ¹⁰⁸In decay. Some could be for this decay also. 1992Ku01 have found a strong 1088 γ from a level at 1721 to the 657 level. They give γ branching but they do not say to what

isomer the gammas belong. Authors report $\alpha(K)$ exp data from decay and $(p,p'\gamma)$. These data are given in $(p,p'\gamma)$.

E(level)	J^{π}	T _{1/2}	E(level)	J^{π}	E(level)	J^{π}
0	0^{+}	stable	2162.6 4	2+	3046.7 3	$1^+, 2^+$
632.99 15	2^{+}		2202.3 4	3-	3452.5 <i>3</i>	$1^+, 2^+$
1508.4 5	4^{+}		2365.3 <i>3</i>	2+	3811.5 <i>3</i>	$1^+, 2^+$
1601.18 20	2^{+}		2486	2+	3825.4 6	$1^+, 2^+$
1720.5	0^{+}		2619.0 4	$2^+, 3^+$		
1913.03 24	0^{+}		2681.5 <i>3</i>	2+		

ε, β^+ radiations

¹⁰⁸Cd Levels

E(decay)	E(level)	Iβ ⁺ ‡	$I\varepsilon^{\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger\ddagger}$	Comments
(1341 9)	3825.4	0.0085 12	3.7 3	5.43 4	3.7 3	av $E\beta$ =149.9 40; ε K=0.8588 3; ε L=0.11111 6; ε M+=0.02779 2
(1355 9)	3811.5	0.017 2	6.3 4	5.21 3	6.3 4	av Eβ=156.0 40; εK=0.8585 3; εL=0.11103 6; εM+=0.02777 2
(1714 9)	3452.5	0.41 3	9.1 6	5.25 3	9.5 6	av Eβ=311.6 40; εK=0.8243 17; εL=0.10585 24; εM+=0.02645 6
(2120 9)	3046.7	0.76 6	3.3 2	5.87 4	4.1 3	av Eβ=489.4 40; εK=0.703 4; εL=0.0898 5; εM+=0.02243 12
(2485 9)	2681.5	1.3 1	2.2 3	6.19 5	3.5 4	av E β =652.1 41; ε K=0.545 4; ε L=0.0695 6; ε M+=0.01733 13
(2548 9)	2619.0	5.0 3	7.5 4	5.68 3	12.5 7	av E β =680.1 41; ε K=0.518 4; ε L=0.0659 5; ε M+=0.01645 13
(2681 9)	2486	1.5 1	1.8 1	6.36 <i>3</i>	3.3 2	av E β =740.1 41; ε K=0.462 4; ε L=0.0587 5; ε M+=0.01465 12
(2801 9)	2365.3	2.3 2	2.1 1	6.32 4	4.4 3	av E β =794.8 41; ε K=0.414 4; ε L=0.0526 5; ε M+=0.01312 11
(2964 9)	2202.3	0.58 6	0.40 4	7.09 5	0.98 10	av Eβ=869.0 42; εK=0.355 3; εL=0.0451 4; εM+=0.01125 10
(3004 9)	2162.6	4.4 2	2.9 2	6.24 3	7.3 4	av Eβ=887.1 42; εK=0.342 3; εL=0.0434 4; εM+=0.01083 10
(3254 9)	1913.03					av $E\beta = 990 \ 40; \ \varepsilon K = 0.274 \ 22; \ \varepsilon L = 0.035 \ 3; \ \varepsilon M + = 0.0087 \ 7$
						<i>L</i> ε: $\Delta J^{n} = 2$ implies negligible feeding. The intensity imbalance may be due to unplaced transitions.
(3566 9)	1601.18	3.7 3	1.1 <i>1</i>	6.81 4	4.8 4	av $E\beta$ =1145.6 42; ε K=0.2016 17; ε L=0.02553 22; ε M+=0.00637 6
(3658 9)	1508.4					av $E\beta$ = 1180 40; ε K= 0.188 15; ε L= 0.0238 19; ε M+= 0.0059 5 Le: ΔI^{π} =2 implies negligible feeding. The intensity
(4534 9)	632.99	30.4 10	3.50 12	6.520 17	33.9 11	imbalance may be due to unplaced transitions. av E β =1599.2 43; ε K=0.0893 7; ε L=0.01127 8;

Continued on next page (footnotes at end of table)

¹⁰⁸In ε decay (39.6 min) 1975Fl01,1984Ro10 (continued)

ϵ, β^+ radiations (continued)

E(decay) E(level)

Comments

 ε M+=0.002810 20 E(decay): E= 3494 10 (1986Bo28).

[†] From I(γ +ce) imbalance at each level.

[‡] Absolute intensity per 100 decays.

$\gamma(^{108}\text{Cd})$

I γ normalization: normalization of the decay scheme per 100 decays of the parent was made by assuming the sum of γ 's to the g.s.=100%. 1963Ka18 established the absence of g.s. feeding using $\beta\gamma$ -coincidence measurements. β^+ , ε feeding to the levels was deduced by requiring an intensity balance at each level. Approximately 10% of the total intensity observed by 1975Fl01 was not placed in the decay scheme by the authors.

Eγ‡	$I_{\gamma}^{\ddagger @}$	E_i (level)	J_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [†]	Comments
^x 156.2 2	0.21 3						
^x 171.4 2	1.03 7						
311.6 3	1.32 9	1913.03	0^{+}	1601.18	2^{+}		
^x 391.3 <i>1</i>	0.47 7						
^x 536.1 1	1.06 9						
632.9 2	100	632.99	2+	0	0^{+}	E2	Mult.: E2 from adopted γ 's.
770.9 2	0.42 7	3452.5	1+,2+	2681.5	2+		E_{γ} : a 770.5 γ reported by 1984Ro10 is placed by them from a 3561 level.
875.4 <i>4</i>	3.20 20	1508.4	4+	632.99	2+	E2	Mult.: $\alpha(K)$ exp allows M1,E2. $\Delta J=2$ from $\gamma(\theta)$ in $(p,2n\gamma)$.
884.1 [#] 3	0.37 8	2486	2+	1601.18	2^{+}		
^x 936.0 3	0.25 8						
968.5 5	5.7 3	1601.18	2+	632.99	2^{+}	M1,E2	
1017.7 4	0.20 6	2619.0	$2^+, 3^+$	1601.18	2+	<i>,</i>	
1087.5 5	2.00 14	1720.5	0^{+}	632.99	2^{+}		
1280.1 4	0.65 9	1913.03	0^{+}	632.99	2^{+}		
^x 1293.7 3	0.94 11						
^x 1408.5 3	0.19 10						
1445.6 <i>4</i>	0.32 8	3046.7	$1^+, 2^+$	1601.18	2^{+}		
^x 1475.0 3	0.77 13						
^x 1513.1 2	1.19 <i>13</i>						
1529.4 5	9.6 5	2162.6	2+	632.99	2+		Mult.: 1984Ro10 determine α (K)exp=0.00019 which indicates E1. This mult is not confirmed by new measurement of 1990Ku01 or by data in (n,n' γ).
1569.3 <i>3</i>	1.28 13	2202.3	3-	632.99	2^{+}		
1601.2 <i>3</i>	5.3 <i>3</i>	1601.18	2^{+}	0	0^{+}	E2	
1732.1 4	5.0 <i>3</i>	2365.3	2+	632.99	2^{+}	M1,E2	
1851.9 [#] 5	4.0 3	2486	2+	632.99	2^{+}		
^x 1864.0 4	0.70 20						
1913.4 4		1913.03	0^{+}	0	0+	E0	I _γ : pure E0 gives I _γ =0, so I _γ =0.13 <i>3</i> from 1975Fl01 probably is an error. I _γ <0.1 (1984Ro10). Mult : α (K)exp>0.012 (1984Ro10) > 0.025 (1992Ku01).
1986.3 5	16.2 9	2619.0	$2^+, 3^+$	632.99	2^{+}	M1,E2	
2048.3 <i>4</i> ^x 2112.4 <i>3</i>	4.0 <i>4</i> 0.33 <i>4</i>	2681.5	2+	632.99	2+	,	
2211.1 5	0.70 10	3811.5	$1^+, 2^+$	1601.18	2^{+}		

$^{108} {\rm In} \ \varepsilon$ decay (39.6 min) 1975F101,1984Ro10 (continued)

		γ (¹⁰⁰ Cd) (continued)										
${\rm E_{\gamma}}^{\ddagger}$	I_{γ} ^{‡@}	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger @}$	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_{f}^{π}	
2224.2 5	1.80 20	3825.4	$1^+, 2^+$	1601.18	2^{+}	3178.4 4	2.1 3	3811.5	$1^+, 2^+$	632.99	2+	
^x 2278.3 5	0.82 12					3452.2 5	12.0 7	3452.5	$1^+, 2^+$	0	0^{+}	
^x 2316.9 6	0.40 10					x3689.4 22	1.40 20					
2365.1 5	0.70 10	2365.3	2^{+}	0	0^{+}	3811.8 5	5.5 4	3811.5	$1^+, 2^+$	0	0^{+}	
2413.2 6	1.90 10	3046.7	$1^+, 2^+$	632.99	2^{+}	3825.5 20	3.1 <i>3</i>	3825.4	$1^+, 2^+$	0	0^{+}	
2681.3 4	1.00 10	2681.5	2+	0	0^{+}	x4052.0 25	0.8 <i>3</i>					
x2816.0 10	0.91 15					x4342.8 23	1.0 3					
3046.8 4	3.2 3	3046.7	$1^+, 2^+$	0	0^+							

(108 Cd) (co ntin (hai

[†] Based on $\alpha(K)$ exp from relative I(ce(K)) and I γ of 1984Ro10 normalized so that $\alpha(K)$ exp(633 γ)=0.00301 (E2 theory).

[‡] From 1975Fl01.

[#] Placed by 1975Fl01 from the 3452 level; however, agreement with energy and branching ratio in $(n,n'\gamma)$ and in-beam data suggest population of the 2486 level.

[@] For absolute intensity per 100 decays, multiply by 0.764 6.

 $x \gamma$ ray not placed in level scheme.

 $^{108}_{48}\text{Cd}_{60}\text{-}4$

¹⁰⁸In ε decay (39.6 min) 1975Fl01,1984Ro10

