108 Ag β^- decay (2.382 min)

Type Author Citation Literature Cutoff Date
Full Evaluation Jean Blachot ENSDF 1-Jul-2008

Parent: 108 Ag: E=0.0; $J^{\pi}=1^+$; $T_{1/2}=2.382$ min 11; $Q(\beta^-)=1650$ 7; $\%\beta^-$ decay=97.15 20

¹⁰⁸Ag-%β⁻ decay: from I(β⁻ to g.s.)+I(633γ)+I(β⁺ to g.s.)(1+ε/β⁺)+ I(434+931+1441+1540 γ's)=100 and I(633γ)/β⁻=0.0181 10 (1962Fr07), I(β⁺)/I(633γ)=0.160 7 (1962Fr07) and ε/β⁺(g.s.)=7.33 22 (theory). The data quoted from 1962Fr07 are not given explicitly by the authors although they are the experimentally determined quantities. The values were deduced by the evaluators from the β⁻, β⁺, and ε branchings given by the authors.

 $\%\beta^{-}$ = 97.15 20.

See also 108 Ag ε decay (2.382 min).

108Cd Levels

 $\frac{\text{E(level)}}{0.0}$ $\frac{\text{J}^{\pi}}{0^{+}}$ $\frac{\text{T}_{1/2}}{\text{stable}}$ 632.98 5 2⁺

β^- radiations

1962Fr07 measured β^- branches of 1650 keV and 1018 keV. In addition, 1962Fr07 report the existence of a β -branch of 177 keV, $\approx 0.02\%$. Such a branch implies the existence of a level at ≈ 1470 . However, as has been shown by 1973Si02, such a level probably does not exist. Other β^- measurements: 1960Wa10, 1956Jo23, 1953Pe16, 1952Go02.

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	Log ft			Comments
1017 8	632.98	1.76 10	5.35 3	av Eβ=	356 <i>4</i>	
1650 8	0.0	95.4 <i>3</i>	4.425 9	av E β =	629 <i>4</i>	

[†] From $I(\gamma+ce)$ -imbalance at each level.

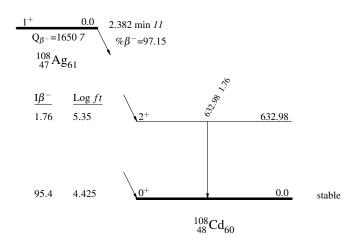
$\gamma(^{108}\text{Cd})$

Iy normalization: from $I(\beta^- \text{ to g.s.})+I(633\gamma)+I(\beta^+ \text{ to g.s.})(1+\varepsilon/\beta^+)+I(434+931+1441+1540 \ \gamma'\text{ s})=100$ and $I(633\gamma)/\beta^-=0.0181 \ 10$ (1962Fr07), $I(\beta^+)/I(633\gamma)=0.160 \ 7$ (1962Fr07) and $\varepsilon/\beta^+(\text{g.s.})=7.33 \ 22$ (theory). The data quoted from 1962Fr07 are not given explicitly by the authors although they are the experimentally determined quantities. The values were deduced by the evaluators from the β^- , β^+ , and ε branchings given by the authors.

$$\frac{{\rm E}_{\gamma}{}^{\dagger}}{632.98\ 5} \quad \frac{{\rm I}_{\gamma}{}^{\ddagger\#}}{350\ 18} \quad \frac{{\rm E}_{i}({\rm level})}{632.98} \quad \frac{{\rm J}_{i}^{\pi}}{2^{+}} \quad \frac{{\rm E}_{f}}{0.0} \quad \frac{{\rm J}_{f}^{\pi}}{0^{+}}$$

[‡] Absolute intensity per 100 decays.

[†] Ey is from 1973Si02.


 $^{^{\}ddagger}$ From 1973Si02 relative to I(433 γ in 108 Pd)=100.

[#] For absolute intensity per 100 decays, multiply by 0.00503 12.

$^{108}{ m Ag}\,eta^-$ decay (2.382 min)

Decay Scheme

Intensities: I_{γ} per 100 parent decays

