¹⁰⁷Ag(n, γ) E=th: secondary 1985Ma54

History												
Туре	Author	Citation	Literature Cutoff Date									
Full Evaluation	Jean Blachot	ENSDF	1-Jul-2008									

¹⁰⁸Ag Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$
0	1+		598.654 <i>3</i>	3-,4-	880.598 13	2+
79.139 <i>1</i>	2-	1.2 ns 4	606.531 <i>3</i>	1-	899.941 <i>3</i>	1-
109.466 7	6+		611.659 <i>3</i>	$2^+, 3^+$	942.334 14	3-
155.876 4	$5^+, 6^+$		615.706 <i>3</i>	3+	960.149 5	2-
193.075 2	1^{+}	<0.5 ns	616.943 <i>3</i>	2^{-}	967.455 8	(3,4 ⁻)
206.612 2	2+	<0.2 ns	645.498 <i>4</i>	$(3)^+$	974.331 <i>4</i>	2-
215.382 2	3+	50 [@] ns 3	656.328 21	3-	1001.804 8	$1^+, 2^-$
294.561 2	2^{+}	<0.14 ns	656.652 4	$3^+, 4^+$	1002.595 10	$1^+, 2^-$
324.495 2	3+		679.092 5	1-	1012.55 4	1+,2,3
338.419 2	3-	<0.11 ns	703.583 5	3-,4-	1012.724 4	2-,3-
364.237 <i>3</i>	$3^+, 4^+$		705.692 5	$1^{-}, 2^{-}$	1013.210 14	$1^+, 2, 3^+$
379.242 2	1-	<0.14 ns	708.845 <i>3</i>	$(2)^{-}$	1034.411 8	3+
408.364 2	3+	<0.14 ns	715.806 6	$1^{-},2^{-}$	1051.566 18	(1^{+})
465.641 <i>3</i>	0-		719.365 4	$1^{-},2^{-}$	1051.844 13	(2^{-})
471.846 <i>3</i>	3+,4+		765.467 <i>3</i>	2-	1079.203 5	2-,3-,4-
485.056 2	4-,5-		779.727 4	(2,3)-	1079.817 14	2
508.477 2	2^{-}	<0.2 ns	799.674 <i>3</i>	3-	1096.844 21	$(3)^{+}$
516.843 2	3-	<0.14 ns	803.733 5	2-	1106.676 18	2+
542.848 <i>3</i>	3-		819.117 7	2-	1109.309 6	3+
563.812 2	2+	<0.14 ns	858.367 4	(2,3) ⁻	1112.254 22	1^{+}
579.110 5	$0^{-}, 2^{-}$		858.44 <i>3</i>	$(2,3,4^+)$	1143.94 <i>3</i>	1+
587.361 <i>3</i>	$(4)^{-}$		869.302 8	3+	1176.47 5	1,2

 † Author's values from a least-squares fit to the Ey.

[‡] From Adopted Levels. [#] From $\gamma\gamma(t)$ of 1985Ma54, except where noted otherwise. [@] Weighted average of $\gamma\gamma(t)$ values of 1968Ro06 (48 ns 4), 1971Gu05 (54 ns 8) and 1985Ma54 (53 ns 6).

$ \frac{r^{(108} \Lambda p)}{\frac{1}{24,525}} = \frac{F_1}{100,309} + \frac{F_1}{2} + \frac{F_2}{100,103} + \frac{F_2}{2} + \frac{F_2}{2} + \frac{Mul.^{\#}}{100,203} + \frac{\delta^{\#}}{2} + \frac{\sigma^{K_2}}{2} + \frac{I_{0} + c\sigma^{\frac{1}{2}}}{100,103} + \frac{0008 2}{0000,23} + \frac{0008 2}{0000,23} + \frac{0008 2}{100,103,23} + \frac{1}{100,203} + \frac{1}{2} $	$\frac{107}{\text{Ag}(n,\gamma)} \text{ E=th: secondary} \qquad 1985\text{Ma54 (continued)}$												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							$\gamma(10)$	⁰⁸ Ag)					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	E_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [#]	δ#	α &	$I_{(\gamma+ce)}$ ‡	Comments			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	^x 28.52 5								0.008 2				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$30.08\ 5$	1109.309	31	1079.203	2,3,4				0.012 3				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	46.435.3	155.876	$5^{+}.6^{+}$	109.466	6+	M1+E2	0.43 10	6.9.12	7.60.15	$\alpha(K) = 4.6.2; \ \alpha(L) = 1.7.6; \ \alpha(M) = 0.34.11; \ \alpha(N+1) = 0.11.3$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	x74.523 3	155.670	5 ,0	107.100	0	M1(+E2)	≤0.2	1.04 6	4.40 22	$\alpha(\mathbf{K}) = 0.89 \ 4; \ \alpha(\mathbf{L}) = 0.124 \ 18; \ \alpha(\mathbf{M}+) = 0.028 \ 4$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	^x 74.831 6					~ /			0.27 5				
79.138 79.139 2 ⁻ 0 1 ⁺ EI 0.313 61 $a(K)=0.272; a(L)=0.0336; a(M+)=0.0079$ B(E)(V,W)=0.00038 <i>I</i> .3 Mult: from a(K)exp in ¹⁰⁸ Ag IT decay. 87.944 294.561 2 ⁺ 206.612 2 ⁺ M1(+E2) ≤0.2 0.64.3 0.18 B(M1)(W.u.)>0.0017 91.893 708.845 (2) ⁻ 616.943 2 ⁻ M1 0.406 3.20 <i>I</i> .6 B(M1)(W.u.)>0.024 101.483 294.561 2 ⁺ 193.075 ¹⁺ M1 0.397 1.27 7 *103.013 4 M1 0.397 1.27 7 0.044 <i>I</i> 0.110 0.40 3 B(H1)(W.u.)>0.049 113.951 598.654 3 ⁺ , 4 ⁻ 0.110 0.266 10.06 100.64 38 (E)(W.u.)>8.5×10 ⁻⁶ 117.886 324.495 3 ⁺ 206.612 2 ⁺ M1 0.266 10.06 101.64 Mult: fmemet. (4) ⁻ placement. *126.368 6 127.474 206.612 2 ⁺ 91.393 2 ⁻ 0.050 6 100.69 100.65 127.474 206.612 2 ⁺ 91.393 2 ⁻ 0.303 0.066 9 100.61	x78.520 20								3.7 4				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	79.138 <i>3</i>	79.139	2-	0	1+	E1		0.313	61 6	$\alpha(K)=0.272; \ \alpha(L)=0.0336; \ \alpha(M+)=0.0079$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										B(E1)(W.u.)=0.00038 I3			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	87 044 4	204 561	2+	206 612	2^+	$M1(\pm E2)$	<0.2	0.64.3	0.18.2	Mult.: from $\alpha(\mathbf{K}) \exp in^{100} \operatorname{Ag} 11$ decay. B(M1)(W n)>0.0017			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	07.944 4 91 893 3	708 845	$(2)^{-}$	616 943	$\frac{2}{2^{-}}$	M1(+E2) M1(+E2)	≤ 0.2	0.04 3	0.182 0.114	B(W11)(W.u.) > 0.0017			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	101.483 3	294.561	2^{+}	193.075	ī+	M1(122)	_0.2	0.406	3.20 16	B(M1)(W.u.)>0.024			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	102.309 3	587.361	$(4)^{-}$	485.056	4-,5-	M1		0.397	1.27 7				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	^x 103.013 4					M1			0.22 2				
113.595 4598.6543 ⁺ .4 ⁻ 485.0564 ⁺ .5 ⁻ M1(+E2)≤0.20.307 1/23.4 3113.800 4408.3643 ⁺ 294.5612 ⁺ M10.2943.3 2B(M1)(W.u.)>0.049117.886 4324.4953 ⁺ 206.6122 ⁺ M10.26610.0 6Mult: M1(+E2) with $\delta \le 0.4$, but in conflict with (2) ⁻ to (4) ⁻ placement.*126.368 6	110.179 5	708.845	$(2)^{-}$	598.654	3-,4-				0.094 11				
113.800 4408.3643*294.5612*M10.2943.32B(M1)(W.u.)>0.049113.931 2193.0751*79.1392*E10.1100.40.3B(E1)(W.u.)>8.5×10^{-6}117.886 4324.4953*206.6122*M10.26610.0.6121.454 6708.845(2)*587.361(4)*W1(+E2)≤0.80.30.80.066 9127.474 6206.6122*79.1392*0.500.5060.050 6129.232 4508.4772*379.2421*M1(+E2)≤0.40.230.250 15B(M1)(W.u.)>0.0024131.806 6338.4193*206.6122*M1+E20.520.25 40.150 110.059 7134.469 589.9411*765.4672*M1+E20.520.25 40.150 11136.241 6215.3823*79.1392*E10.0660.210 15B(E1)(W.u.)=4.7×10^{-8} 6137.498 1/31079.8172942.3343*0.022 70.035 6143.911 1/31013.2101*,2,3*86.93023*0.015 6143.911 1/31013.2101*,2,3*86.93023*0.017 11.12 7149.855 5364.2373*,4*324.4953*M10.97 6148.855 5364.2373*,4*328.4953*M10.97 5149.159 61109.3093*960.1492*0.034 4155.448 5563.8122*408.364	113.595 4	598.654	3-,4-	485.056	4-,5-	M1(+E2)	≤0.2	0.307 12	3.4 3				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	113.800 4	408.364	3+	294.561	2+	M1		0.294	3.3 2	B(M1)(W.u.) > 0.049			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	113.931 2	193.075	1 ⁺ 2+	79.139	2-	El		0.110	0.40 3	$B(E1)(W.u.) > 8.5 \times 10^{-6}$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	117.886 4	324.495 708.845	$(2)^{-}$	200.012	$\frac{2}{(4)^{-}}$	MI		0.266	10.0 6	Mult \cdot M1(+E2) with $\delta < 0.4$ but in conflict with $(2)^{-}$ to			
	121.454 0	/00.045	(2)	567.501	(4)					(4) \neg placement			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	^x 126.368 6					M1(+E2)	≤0.8	0.30 8	0.066 9				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	127.474 6	206.612	2+	79.139	2^{-}				0.050 6				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	129.232 4	508.477	2-	379.242	1-	M1(+E2)	≤0.4	0.23 3	0.250 15	B(M1)(W.u.)>0.0024			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	131.806 6	338.419	3-	206.612	2+				0.059 7				
136.241 6215.382 3^+ 79.139 2^- E10.0660.210 15B(E1)(W.u.)= 4.7×10^{-6} 6137.498 131079.8172942.334 3^- 0.022 7140.895 7606.5311^-465.6410^-M10.1620.055 6143.911 131013.2101 ⁺ ,2,3 ⁺ 869.3023 ⁺ 0.015 6147.349 5471.8463 ⁺ ,4 ⁺ 324.4953 ⁺ M10.97 6148.524 6765.4672 ⁻ 616.9432 ⁻ 0.034 4148.855 5364.2373 ⁺ ,4 ⁺ 215.3823 ⁺ M1+E20.4 10.17 11.12 7149.159 61109.3093 ⁺ 960.1492 ⁻ 0.034 4155.448 5563.8122 ⁺ 408.3643 ⁺ M10.1240.79 5B(M1)(W.u.)>0.0055 $^{x}159.291 8$ 0.050 80.019 50.019 50.019 50.019 50.019 5160.460 ^d 11960.1492 ⁻ 799.6743 ⁻ 0.019 50.019 5	134.469 5	899.941	1-	765.467	2-	M1+E2	0.5 2	0.25 4	0.150 11	× × - × - × - × - × - × - × -			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	136.241 6	215.382	3+	79.139	2-	E1		0.066	0.210 15	$B(E1)(W.u.)=4.7\times10^{-6} 6$			
140.8957 000.531 $1^{+}2.3^{+}$ 405.041 0^{-} $M1$ 0.102 0.0356 143.911 13.210 $1^{+}2.3^{+}$ 869.302 3^{+} 0.0156 147.3495 471.846 $3^{+},4^{+}$ 324.495 3^{+} $M1$ 0.976 148.5246 765.467 2^{-} 616.943 2^{-} 0.0344 148.8555 364.237 $3^{+},4^{+}$ 215.382 3^{+} $M1+E2$ 0.41 0.171 1.127 149.1596 1109.309 3^{+} 960.149 2^{-} 0.0344 155.4485 563.812 2^{+} 408.364 3^{+} $M1$ 0.124 0.795 $B(M1)(W.u.) > 0.0055$ $^{x}159.2918$ 0.0508 0.0195	137.498 13	10/9.81/	2 1 ⁻	942.334	3 0 ⁻	M1		0.162	0.022 /				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	140.893 7	1013 210	1^{+} 2 3 ⁺	869 302	0 3 ⁺	1111		0.102	0.055.0				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	147.349.5	471.846	$3^+.4^+$	324,495	3+	M1			0.97.6				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	148.524 6	765.467	2-	616.943	2-				0.034 4				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	148.855 5	364.237	$3^+, 4^+$	215.382	3+	M1+E2	0.4 1	0.17 1	1.12 7				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	149.159 6	1109.309	3+	960.149	2-				0.034 4				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	155.448 5	563.812	2+	408.364	3+	M1		0.124	0.79 5	B(M1)(W.u.) > 0.0055			
160.460^a II 869.302 3^* 708.845 (2) 0.019 5 160.460^a II 960.149 $2^ 799.674$ $3^ 0.019$ 5 160.460^a II 960.149 $2^ 799.674$ $3^ 0.019$ 5	^x 159.291 8	0.60.000	2+	500.045	(2) -				0.050 8				
100.400^{-11} 900.149 2 /99.0/4 5 0.019 5	160.460^{a} 11	869.302	3	708.845	(2)				0.019 5				
	100.400 11 x161.016.14	900.149	Z	/99.0/4	3				0.019.5 0.022.7				
x ¹ 64 064 9 0.022 / 0.019 4	x164.064 9								0.019 4				
x165.290 11 0.018 7	^x 165.290 11								0.018 7				
165.997 7 708.845 (2) ⁻ 542.848 3 ⁻ 0.047 5	165.997 7	708.845	(2)-	542.848	3-				0.047 5				

ы

107 Ag(n, γ) E=th: secondary							econdary	1985Ma54 ((continued)
						<u> γ(</u>	¹⁰⁸ Ag) (cont	tinued)	
${\rm E_{\gamma}}^{\dagger}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	α &	$I_{(\gamma+ce)}$ ‡	Comments
170.058 6	508.477	2^{-}	338.419	3-	M1(+E2)	≤0.2	0.100 3	0.46 3	B(M1)(W.u.)>0.0024
170.615 8	679.092	1-	508.477	2^{-}	. ,			0.022 4	
^x 172.107 9								0.019 4	
172.625 7	379.242	1-	206.612	2+				0.031 4	
173.648 8	645.498	$(3)^+$	471.846	3+,4+				0.022 4	
174.657 6	974.331	2-	799.674	3-	M1		0.091	0.200 14	
178.424 6	516.843	3-	338.419	3-	MI		0.086	1.74 12	B(M1)(W.u.) > 0.018
1/8.614 <i>13</i>	542.848	3	364.237	3',4'				0.016 5	
x190.040 11								0.0104	
180.232.8	800 0/1	1-	710 365	1-2-				0.037 4	
x182 391 13	099.941	1	/19.303	1,2				0.019 5	
x185 922 12								0.019 4	
186.167 7	379.242	1-	193.075	1+				0.150 11	
x190.858 10								0.018 3	
192.005 7	708.845	$(2)^{-}$	516.843	3-	E2(+M1)	≥1.4	0.131 13	0.120 7	
192.356 10	516.843	3-	324.495	3+				0.016 3	
193.077 6	193.075	1^{+}	0	1^{+}	M1+E2	-0.21 5	0.072 2	16.7 9	B(M1)(W.u.)>0.0052; B(E2)(W.u.)>2.9
									δ : from $\gamma(\theta)$ in (p,n γ).
197.199 ^a 14	705.692	$1^{-}, 2^{-}$	508.477	2-				0.016 3	
197.199 ^a 14	803.733	2-	606.531	1-				0.016 3	
199.870 8	579.110	$0^{-}, 2^{-}$	379.242	1-				0.047 5	
200.358 10	708.845	$(2)^{-}$	508.477	2-			0.062.2	0.022 4	
201.020 9	799.674	3	598.654	3,4 2+	MI(+E2)	≤0.2	0.063 2	1.94 14	$\mathbf{D}(\mathbf{M}) = \mathbf{M} + \mathbf{D} + \mathbf$
201.752 7 X202.145 8	408.364	3	206.612	2.	MI(+E2)	≤ 0.2	0.063 1	2.03 14	B(M1)(W.U.)>0.0064
202.143 8	710 365	1-2-	516 8/3	3-				0.0090	
202.307 9	611 659	$2^{+},2^{+}$	408 364	3+ 3+	$M1(\pm F2)$	<0.6	0.068.8	0.038 4	
x203.207 7	011.057	2,5	+00.50+	5	WII(122)	<u> </u>	0.000 0	0.048 5	
204.427 7	542.848	3-	338.419	3-	M1(+E2)	< 0.4	0.063 4	0.68 5	
206.612 7	206.612	2+	0	1+	M1		0.058	24.7 17	B(M1)(W.u.) > 0.012
207.340 7	615.706	3+	408.364	3+	M1(+E2)	≤0.3	0.060 3	0.37 3	
208.566 10	616.943	2^{-}	408.364	3+	. ,			0.025 3	
212.314 8	799.674	3-	587.361	(4)-	M1(+E2)	≤0.4	0.057 3	0.68 5	
^x 212.554 8					E2(+M1)	≥ 0.8	0.086 14	0.110 7	
213.052 7	1012.724	2-,3-	799.674	3-	M1(+E2)	≤0.3	0.055 2	0.46 3	
^x 213.413 8		_			M1+E2	1.1 6	0.075 13	0.086 6	
213.911 8	508.477	2-	294.561	2+	50		0.007	0.064 5	
215.381 7	215.382	3-	0	1^{+}	E2		0.096	9.7 6	$B(E2)(W.u.)=0.71 \ \delta$
x215 543 8								0 120 11	Mult.: $E_2(+N11)$ from $\alpha(exp)$, Δj fulles out M1.
213.343 0	703 583	3- 1-	485 056	4- 5-				0.120 II 0.021 3	
x218.742.16	105.505	5,7	102.020	т,Ј				0.019 6	
210.71210								0.017 0	

ω

 $^{108}_{47}\mathrm{Ag}_{61}$ -3

L

 $^{108}_{47}\mathrm{Ag}_{61}$ -3

From ENSDF

					¹⁰⁷ Ag(n,)) E=th: s	econdary	1985Ma5	4 (continued)		
						<u>γ</u> ((¹⁰⁸ Ag) (co	ontinued)			
E_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	δ#	α &	$I_{(\gamma+ce)}$ ‡		Comments	
x220.890 8								0.077 6			
222.607 14	765.467	2^{-}	542.848	3-				0.016 3			
x222.990 8								0.050 4			
225.388 8	563.812	2^{+}	338.419	3-				0.066 5			
^x 226.462 9								0.034 <i>3</i>			
227.291 8	606.531	1-	379.242	1-	M1+E2	0.6 3	0.054 6	0.220 16			
x227.960 14								0.018 4			
x229.233 21								0.013 4			
*229.805 12	1024 411	2+	000 500	2 -				0.014 4			
230.680 10	1034.411	31	803.733	2				0.019 4			
~231.445 14	1051 944	(2^{-})	010 117	2-				0.0174			
X222 515 11	1031.844	(2)	819.117	Z				0.010 4			
235.313 11	770 727	$(2 \ 3)^{-}$	512 818	2-				0.0224			
230.079.9	645 408	$(2,3)^+$	108 364	3 2+				0.044 5			
237.133 14 $237.133^{a} 14$	1002 505	(3) 1+2-	765 467	2- 2-				0.030.8			
237.133 14	616 943	$2^{-},2^{-}$	379 242	1-				0.030.8 0.013.4			
x238 975 12	010.915	2	517.212	1				0.022.4			
239.319.8	563.812	2+	324,495	3+	M1(+E2)	< 0.3	0.040 1	2.14 15	B(M1)(W.u.) > 0.0040		
240.054 11	705.692	$\bar{1}^{-}.2^{-}$	465.641	0^{-}		_010	010101	0.025 3	D(111)(1111)/ 010010		
240.785 10	960.149	2-,-	719.365	$1^{-}.2^{-}$				0.031 4			
241.442 19	858.367	$(2,3)^{-}$	616.943	2-,-				0.016 4			
244.337 10	960.149	2-	715.806	$1^{-}, 2^{-}$				0.054 4			
^x 244.684 20								0.022 4			
248.289 9	656.652	$3^+, 4^+$	408.364	3+	M1(+E2)	≤0.8	0.040 5	0.38 <i>3</i>			
248.628 12	765.467	2-	516.843	3-				0.027 4			
248.937 9	587.361	$(4)^{-}$	338.419	3-				0.290 20			
250.14 3	715.806	$1^{-}, 2^{-}$	465.641	0^{-}				0.015 5			
x251.007 20								0.016 5			
251.470 11	615.706	3+	364.237	$3^+, 4^+$				0.029 4			
x252.931 10								0.047 4			
x253.527 14							0.010.0	0.014 4			
*254.444 10	1024 411	2+	770 707	(2,2) =	M1(+E2)	≤1.2	0.040 6	0.061 5			
254.73 3 X255.202.0	1034.411	31	119.121	(2,3)	N/1			0.020 8			
×255.292 9 ×256 768 20					M1			0.270 19			
256 087 0	765 167	2-	508 177	2-				0.0174			
×257 137 10	/03.40/	2	500.477	2				0.0977			
259 279 8	338 410	3-	70 130	2-	M1(±F2)	<0.6	0.034.2	0.050 7 0.4 7	$B(M1)(W_{12}) > 0.0081$		
259 714 9	858 367	$(2,3)^{-}$	598 654	$\frac{2}{3} - 4^{-}$	M1(+E2)	<0.5	0.0342 0.0342	0.77019	B(1911)(11.0.)>0.0001		
260.239 9	598 654	3-4-	338 419	3-,-	M1	_0.5	0.057 2	0.120.8			
261.756 12	967.455	(3.4^{-})	705.692	12-				0.022.3			
262.883 9	779.727	$(2.3)^{-}$	516.843	3-,2	M1			0.100 7			
	/	()=)									

 $^{108}_{47}\mathrm{Ag}_{61}$ -4

L

From ENSDF

 $^{108}_{47}\mathrm{Ag}_{61}\text{--}4$

	107 Ag(n, γ) E=th: secondary 1985Ma54 (continued)											
						$\gamma(^{108}\text{Ag})$	(continued	<u>)</u>				
E_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^π	E_f	J_f^π	Mult. [#]	δ#	α ^{&}	$I_{(\gamma+ce)}$ ‡		Comments		
^x 265.170 20								0.023 4				
^x 268.34 4								0.015 7				
268.642 12	974.331	2-	705.692	$1^{-},2^{-}$				0.029 4				
268.99 3	880.598	2'	611.659	2',3'		<i>(</i>) <i>(</i>	0.021.2	0.021 8				
269.249 9	503.812	$(2, 2)^{-}$	294.301	$\frac{2}{(4)^{-}}$	MI(+E2)	≤0.6	0.031 2	1.07 /	B(M1)(W.u.)>0.0011			
271.000 10	838.307	(2,3)	387.301	(4)				0.055 4 0.210 15				
272.303 9	403.041 508.654	3- 4-	324 405	1 2+				0.210 15				
274.175.12	1143 94	5,4 1 ⁺	869 302	3 3+				0.020 5				
x275 227 10	1143.94	1	009.302	5	M1(+E2)	<0.5	0.029.2	0.096 7				
277 32 4	615 706	3+	338 419	3-	MII(+122)	20.0	0.029 2	0.013 4				
x278.239 15	012.700	5	550.117	5				0.035 4				
278.526 9	616.943	2-	338.419	3-	M1(+E2)	< 0.8	0.029 3	0.37 3				
279.530 10	1079.203	2-,3-,4-	799.674	3-	M1			0.220 16				
^x 279.831 11		, ,						0.037 4				
283.003 9	899.941	1-	616.943	2-	M1		0.0253	0.240 17				
^x 285.756 17								0.019 4				
285.977 12	1001.804	$1^+, 2^-$	715.806	1-,2-				0.048 4				
x286.669 13								0.035 4				
286.891 10	803.733	2^{-}	516.843	3-				0.094 7				
287.165 10	611.659	$2^+, 3^+$	324.495	3+	M1+E2	1.2 + 18 - 8	0.031 5	0.170 12				
x290.227 11								0.062 4				
291.214 10	615.706	3+	324.495	3^+	M1,E2		0.029 6	0.220 16				
292.10 4	656.328	3	364.237	3',4'				0.012 4				
292.431 12	616.943	2	324.495	3' 1+	$M1(\pm E2)$	0.07.5	0.0220	0.044 4	$D(M1)(W_{11}) > 0.0045$			
294.303 9	294.301	2	0	1	$MI(\pm E2)$	+0.073	0.0229	10.9 8	B(M1)(W.u.) > 0.0043			
205 2460 15	803 733	2-	508 477	2-				0.030 /	$\delta : \text{ from } \gamma(\theta) \text{ in } (\mathbf{p}, \mathbf{n}\gamma).$			
295.240 15 205 246 ^{<i>a</i>} 15	07/ 331	2-	670.002	2 1-				0.0304				
x296.060.13	974.551	2	079.092	1				$0.030 \ 4$ $0.034 \ 5$				
x298 800 20								0.034 5				
299 89 3	679 092	1-	379 242	1-				0.031 0				
300.101.9	379.242	1-	79.139	2-	M1(+E2)	+0.117	0.022 1	6.3.5	B(M1)(W.u.) > 0.0053			
500.101 9	377.212	1	17.107	-	MII(122)	10.117	0.022 1	0.5 5	δ : from $\gamma(\theta)$ in (p.n γ).			
x300.426 18								0.028 7	······································			
x300.907 15								0.036 6				
301.841 11	508.477	2^{-}	206.612	2^{+}				0.160 11				
x302.221 14								0.050 5				
x303.882 10					M1,E2		0.025 5	0.260 18				
^x 304.93 4								0.023 6				
x305.418 20								0.027 5				
307.91 4	779.727	(2,3) ⁻	471.846	3+,4+				0.018 6				
x309.30 5								0.016 5				

 $^{108}_{47}{\rm Ag}_{61}\text{-}5$

From ENSDF

 $^{108}_{47}\mathrm{Ag}_{61}$ -5

				$^{107}\mathbf{Ag}$	$g(\mathbf{n}, \gamma) \mathbf{E} = \mathbf{t} \mathbf{I}$	n: secondary	1985Ma54 (continued)
						$\gamma(^{108}\text{Ag})$ (con	ntinued)
E_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	$E_f \qquad J_f^{\pi}$	Mult. [#]	α ^{&}	$I_{(\gamma+ce)}$ [‡]	
^x 309.88 3						0.043 15	
310.223 18	516.843	3-	206.612 2+			0.039 5	
310.818 15	967.455	(3,4-)	656.652 3+,4+			0.055 6	
311.962 11	606.531	1-	294.561 2+	E1		0.240 17	
x313.224 20							
*315.413 13	(11.650	a+ a+	204561 24	M1,E2	0.023 4	0.073 5	
317.104 10	611.659	2+,3+	294.561 2+	Ml	0.019	0.99 7	
317.92 4	656.328	3-	338.419 3-			0.013 4	
*319.28 4	645 400	(2) ±	224 425 24			0.012 3	
320.999 14	645.498	(3)	324.495 3			0.038 4	
322.38 3	616.943	2	294.561 2			0.021 4	
322.709 12	1001.804	1,2	079.092 1	0		0.005 0	
324.493 12	324.495	3+	$0 1^+$	E2 📽		0.116 8	
325.42 3	942.334	3-	616.943 2			0.013 3	
326.45 4	705.692	1,2	379.242 1			0.017 4	
326.950 20	1106.676	2-	779.727 (2,3)			0.022 4	
327.457 11	542.848	3	$215.382 3^{\circ}$	F 1		0.180 13	
329.179 11	485.056	4,5 2+4+	155.8/6 5,6	EI M1 E2	0.020.2	3.64 20	
332.137 12 226 555 16	030.032	$3^{+},4^{+}$	324.495 5 ⁻	MI,E2	0.020 3	0.17012	
xxx6 88 A	/13.800	1,2	579.242 1			0.045 4	
xxxx xxx xxx xxx xxx xxx xxx xxx xxx x						0.017 0	
x337.078.20						0.028 4	
x338 49 3						0.023 4 0.017 4	
x339 52 4						0.017 7	
x341.722 13						0.074.5	
x342.421 18						0.033 5	
343.23 7	960.149	2^{-}	616.943 2-			0.008 4	
345.75 10	1051.566	(1^{+})	705.692 12-			0.013 5	
^x 346.427 14		· /	,			0.070 5	
348.423 13	563.812	2+	215.382 3+	M1,E2		0.130 9	
^x 349.269 16						0.041 4	
349.908 20	858.367	$(2,3)^{-}$	508.477 2-			0.035 5	
350.522 23	967.455	(3,4 ⁻)	616.943 2-			0.026 5	
350.941 12	645.498	$(3)^{+}$	294.561 2+			0.48 4	
^x 351.306 <i>19</i>						0.041 6	
x351.50 10						0.038 12	
353.482 21	819.117	2-	465.641 0-			0.031 4	
^355.60 <i>3</i>						0.016 3	
*357.160 21	074 001	0-	(1(042 0=			0.035 5	
357.410 <i>16</i>	974.331	2	616.943 2			0.048 5	
~ 338.37 4 X250 00 2						0.01/0	
339.99 3						0.035 12	

н

					¹⁰⁷ Ag(n	$,\gamma$) E=th: s	secondary	1985Ma54 (continued)
						<u> </u>	(¹⁰⁸ Ag) (cor	ntinued)
E_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult. [#]	α &	$I_{(\gamma+ce)}$ ‡	
^x 361.24 3							0.013 4	
x362.440 16							0.052 5	
365.165 <i>12</i>	703.583	3-,4-	338.419	3-	M1,E2	0.015 2	0.232 16	
x368 55 3							0.0114 0.0204	
370.416 16	708.845	$(2)^{-}$	338.419	3-			0.020 7	
370.742 13	563.812	2+	193.075	1+	M1,E2		0.340 24	
^x 372.434 15							0.085 6	
375.621 16	1079.203	2-,3-,4-	703.583	3-,4-			0.045 5	
*377.679 21	270 242	1-	0	1+			0.042 4	
379.250 14 x370 80 4	379.242	1	0	1			0.124 9	
280 040 12	710 265	1- 2-	228 /10	2-	E2@		0.0157	
x381 76 3	/19.303	1,2	330.419	3	EZ		0.40 5	
384.355 15	708.845	$(2)^{-}$	324.495	3+			0.166 12	
386.034 17	579.110	0-,2-	193.075	1^{+}			0.112 14	
386.218 15	765.467	2-	379.242	1-			0.140 14	
386.505 14	465.641	0^{-}	79.139	2-	E2 [@]		0.270 19	
x387.70 4							0.032 8	
388.06 <i>4</i>	1096.844	$(3)^{+}$	708.845	$(2)^{-}$			0.058 20	
x380.195.23							0.040 /	
391.458 23	899.941	1-	508,477	2-			$0.029 \neq$ 0.039 5	
393.477 16	1109.309	3+	715.806	$\bar{1}^{-}, 2^{-}$			0.090 6	
395.30 <i>3</i>	1001.804	$1^+, 2^-$	606.531	1-			0.033 6	
^x 395.886 23							0.040 6	
396.277 14	611.659	$2^+, 3^+$	215.382	3+	M1,E2	0.012 1	0.340 24	
397.418 <i>19</i>	869.302	3+	471.846	3+,4+			0.063 5	
399.24 3	606 531	1-	206 612	2+	F1		0.055 0	
x400.241 23	000.551	1	200.012	2	LI		0.064 10	
401.08 6	1012.724	2-,3-	611.659	$2^+, 3^+$			0.024 11	
401.58 ^a 5	616.943	2-	215.382	3+			0.022 6	
401.58 ^{<i>a</i>} 5	1013.210	1+,2,3+	611.659	$2^+, 3^+$			0.022 6	
403.50 8	967.455	$(3,4^{-})$	563.812	2 ⁺			0.020 6	
405.070 22 x405.28 4	611.659	21,31	206.612	21			0.100 I2 0.037 11	
406 17 3	1012 724	2-3-	606 531	1-			0.037 11	
408.369 16	408.364	<u>3</u> ⁺ ,5	0	1+			0.158 11	
410.327 17	616.943	2^{-}	206.612	2^{+}			0.112 9	
410.73 9	819.117	2-	408.364	3+			0.018 9	
x411.86 4							0.020 5	
~412.44 4							0.030 8	

 \neg

					¹⁰⁷ A	g(n, y) E=th	: secondary	1
							γ (¹⁰⁸ Ag) (co	ntir
${\rm E_{\gamma}}^{\dagger}$	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. [#]	$I_{(\gamma+ce)}$ [‡]		
413 49 4	606 531	1-	193 075	1+		0.040.7		
414 307 24	708 845	$(2)^{-}$	294 561	2+		0.040 5		
^x 416.74 7	/00.015	(2)	271.001	-		0.017.5		
^x 419.006.24						0.059.5		
x419.79 3						0.035 5		
^x 420.98 5						0.024 4		
422.71 ^{<i>a</i>} 5	615.706	3+	193.075	1^{+}		0.018 5		
422.71 ^{<i>a</i>} 5	1034.411	3+	611.659	$2^+.3^+$		0.018 5		
423.879 16	616.943	2-	193.075	1+		0.220 16		
425.56 6	942.334	3-	516.843	3-		0.020 5		
427.051 15	765.467	2-	338.419	3-	M1.E2	0.58 4		
429.353 14	508.477	2-	79.139	2-	M1.E2	1.21 9		
430.06 6	645.498	$(3)^{+}$	215.382	3+	,	0.036 12		
x431.368 20						0.104 10		
^x 431.86 <i>3</i>						0.057 9		
^x 432.21 3						0.052 8		
433.22 8	1112.254	1+	679.092	1-		0.020 8		
434.28 4	1079.817	2	645.498	$(3)^{+}$		0.054 14		
^x 435.269 22						0.111 9		
436.17 4	1051.844	(2^{-})	615.706	3+		0.038 8		
437.713 15	516.843	3-	79.139	2-	M1,E2	0.66 5		
438.769 24	1002.595	$1^+, 2^-$	563.812	2+		0.23 8		
438.892 16	645.498	$(3)^{+}$	206.612	2^{+}	M1,E2	0.88 8		
439.872 15	819.117	2-	379.242	1-	M1,E2	0.58 4		
^x 440.698 19					M1,E2	0.200 18		
441.313 18	779.727	$(2,3)^{-}$	338.419	3-		0.170 14		
^x 441.58 5						0.053 16		
442.83 6	598.654	3-,4-	155.876	5+,6+		0.023 8		
443.40 7	960.149	2-	516.843	3-		0.031 8		
^x 445.575 22						0.095 7		
^x 446.16 4				- 1		0.032 6		
448.73 6	1012.55	1+,2,3	563.812	2+		0.022 6		
449.66 5	656.328	3-	206.612	2+		0.061 11		
*451.15 12		(a -)		a- /-		0.026 9		
452.98 5	1051.844	(2^{-})	598.654	3-,4-		0.041 6		
^x 456.14 4		-		-		0.082 8		
457.49 5	974.331	2-	516.843	3-		0.054 11		
*458.01 5	0.00.000	2+	100 0 (1	2+		0.058 10		
460.92 3	869.302	3'	408.364	3' 2-		0.071 11		
462.83 9	10/9.817	2	616.943	2	M1 D2	0.044 13		
405.725 16	542.848	3 2-	/9.139	2 2-	M1,E2	0.51 4		
403.313 23	803./33	2 0=	338.419	5 1+	F 1	0.15 4		
403.030 10	403.041	U	U	1.	EI	1.19 ð		

 ∞

nued)

				-	¹⁰⁷ Ag(n	$,\gamma$) E=th: set	econdary 1985Ma54 (continued)		
						<u> </u>	¹⁰⁸ Ag) (continued)		
E_{γ}^{\dagger}	E _i (level)	${f J}^\pi_i$	E_f	J_f^{π} 1	Mult. [#]	$I_{(\gamma+ce)}$ ‡		Comments	
x466.12 5						0.067 24			
^x 471.45 3						0.043 11			
472.23 3	880.598	2^{+}	408.364 3	3+ I	M1,E2	0.140 24			
472.50 4	679.092	1-	206.612 2	2+		0.104 20			
473.26 6	1079.817	2	606.531 1	1-		0.064 16			
479.150 24	858.367	$(2,3)^{-}$	379.242 1	1- I	E2	0.141 11			
480.73 6	819.117	2-	338.419 3	3-		0.051 13			
482.372.25	967.455	(3,4 ⁻)	485.056 4	1-,5-		0.128 10			
*484.20 10	770 707	(2,2)=	004561	> +		0.044 15			
485.17 4	179.727	(2,3)	294.561 2	2'		0.05/10			
485.98 3	679.092	1	193.075 1	1'		0.188 23			
~480.18 0	1051 566	(1^{+})	562 012 0	h +		0.10 5			
487.743 23	703 583	(1) $3^{-} 4^{-}$	215 382 3	2 2+		0.147 I3 0.045 11			
$x_{400,23}$ 4	105.585	5,4	215.562)		0.045 11			
490.01 4	1079 203	2-3-4-	587 361 ($(4)^{-}$		0.035 8			
492 57 9	1079 817	2,3, 1 2	587 361 ($(4)^{-}$		0.056 11			
493 43 4	708 845	$(2)^{-}$	215 382	3+		0.094 11			
494.12.5	1002.595	$1^+.2^-$	508.477 2	2-		0.052 10			
^x 494.696 25	10021070	- ,=	2001177	ן -	M1.E2	0.188 15			
x495.14 4				-		0.095 14			
495.14 4	1112.254	1^{+}	616.943 2	2-		0.095 14			
497.66 <i>3</i>	1109.309	3+	611.659 2	$2^+, 3^+$		0.101 9			
499.960 19	579.110	$0^{-}, 2^{-}$	79.139 2	2 ^{-'} I	E2	0.51 5			
^x 500.26 5						0.11 5			
500.58 <i>3</i>	1112.254	1^{+}	611.659 2	2+,3+		0.185 17			
502.24 4	708.845	$(2)^{-}$	206.612 2	2+		0.113 10			
504.30 4	1012.724	2-,3-	508.477 2	2-		0.105 13			
508.466 19	508.477	2^{-}	0 1	1 ⁺ I	E1	1.53 12	$B(E1)(W.u.)>4.7\times10^{-6}$		
509.27 4	715.806	$1^{-}, 2^{-}$	206.612 2	2+		0.17 6			
^x 511.54 7						0.098 20			
x517.04 10						0.044 22			
519.52 4	598.654	3-,4-	79.139 2	2-		0.113 17			
520.04 5	858.44	$(2,3,4^+)$	338.419 3	3-		0.085 17			
520.71 3	899.941	1	379.242	l		0.174 14			
*521.70 3	715.000	1- 2-	102.075 1	1 +		0.154 14			
522.71 25 X504 115 25	/15.806	1,2	193.075 1	1'		0.033 30			
[*] 524.115 25	910 117	2-	204 561 2	h +		0.250 18			
324.00 ð x526 50 7	819.11/	Z	294.301 2	2		0.00/23			
520.597	606 531	1-	70 130 3	י -כ	M1 E2	1 38 10			
x530.61.3	000.551	1	17.137 2	ے ک	WII,ĽŹ	0 161 12			
533 01 4	1096 844	$(3)^{+}$	563.812 2	י +2	M1 F2	0 157 14			
533.94 4	858.44	$(2,3,4^+)$	324.495	3+	.,11,122	0.075 11			
0000011	000.11	(_,_,_)		-		5.575 11			

From ENSDF

 $^{108}_{47}\mathrm{Ag}_{61}$ -9

	¹⁰⁷ Ag(\mathbf{n},γ) E=th: secondary 1985Ma54 (continued)										
					<u> </u>	¹⁰⁸ Ag) (continued)					
E_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	$I_{(\gamma+ce)}$ ‡	Comments					
536 21 0	1001 804	$\frac{1}{1+2^{-}}$	<u>465 641</u> 0 ⁻		0.037.0						
537 782 20	616 0/13	$2^{-},2^{-}$	$403.041 \ 0$ 70.130 2 ⁻	M1 E2	0.65 5						
x542.60.4	010.945	2	19.139 2	1011,122	0.107 10						
550.23 8	765.467	2-	215.382 3+		0.046 12						
x552.50 4		_			0.087 9						
558.86 <i>3</i>	765.467	2-	206.612 2+		0.220 16	Mult.: (M1,E2) given , but mult in conflict with 2^- to 2^+ placement.					
563.818 20	563.812	2+	0 1+	M1,E2	0.82 6						
566.19 12	645.498	$(3)^{+}$	79.139 2-		0.039 10						
^x 569.32 18					0.026 12						
571.26 6	1079.817	2	508.477 2-		0.058 10						
572.37 3	765.467	2-	193.075 1+		0.36 3						
573.08 8	779.727	$(2,3)^{-}$	206.612 2+		0.046 12						
574.76 4	869.302	31	294.561 21		0.177 12						
×570.33 9					$0.039\ 10$						
580 10 1	11/3 0/	1+	563 812 2+		0.44 5						
580.00 5	960 149	2^{-}	$303.812 \ 2$ 379.242 1 ⁻		0.109 13						
x583 93 14	200.142	2	577.272 1		0.030 11						
586.00 3	880.598	2+	294.561 2+		0.172 12						
594.19 ^{<i>a</i>} 12	1002.595	$\frac{1}{1^{+}}.2^{-}$	408.364 3+		0.050 15						
594.19 ^{<i>a</i>} 12	1079.203	2-,3-,4-	485.056 45-		0.050 15						
595.08 5	974.331	2-	379.242 1		0.131 12						
597.37 5	1176.47	1,2	579.110 0-,2-		0.122 15						
599.964 <i>23</i>	679.092	1-	79.139 2-	M1,E2	1.53 9						
^x 602.89 9					0.070 18						
603.91 4	942.334	3-	338.419 3-		0.200 20						
606.47 8	606.531	1-	$0 1^+$		0.087 13						
611.76° 6	611.659	2+,3+	0 1+		0.110 17						
$611.76^{\circ} 6$	1096.844	(3)	485.056 4 ,5		0.110 17						
~012.34 ð	616 042	2-	0 1+	E 1	0.08/10						
621 76 3	960 149	$\frac{2}{2^{-}}$	338 419 3-	EI	0.770						
622 53 6	1001 804	$\frac{2}{1+2^{-}}$	379 242 1		0.127.23						
624.43 5	703.583	$3^{-}.4^{-}$	79.139 2-		0.152 19						
626.01 5	1034.411	3^+	408.364 3+		0.15 6						
626.560 22	705.692	$1^{-},2^{-}$	79.139 2-	M1,E2	1.85 13						
x628.63 12		,		, -	0.084 21						
629.72 <i>3</i>	708.845	$(2)^{-}$	79.139 2-	M1,E2	0.30 3						
635.94 5	974.331	2-	338.419 3-	E2	0.22 3						
636.664 24	715.806	1-,2-	79.139 2-	M1,E2	1.32 9						
637.53 8	1001.804	1+,2-	364.237 3+,4+		0.106 19						
640.219 <i>14</i>	719.365	1-,2-	79.139 2	M1,E2	0.99 7						
~042.11 13					0.064 21						

From ENSDF

	¹⁰⁷ Ag(\mathbf{n},γ) E=th: secondary 1985Ma54 (continued)										
							$\gamma(^{108}\text{Ag})$ (contin	ued)			
${\rm E_{\gamma}}^{\dagger}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^π	Mult. [#]	${\rm I}_{(\gamma+ce)}$ ‡	E_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	$I_{(\gamma+ce)}$ ‡
646.71 7	1112.254	1+	465.641	0-		0.104 16	795.96 6	1002.595	$1^+, 2^-$	206.612 2+	0.59 7
^x 647.58 9						0.087 18	797.0 5	1176.47	1,2	379.242 1-	0.13 9
648.26 9	1012.55	1+,2,3	364.237	3+,4+		0.070 14	^x 802.73 13				0.15 3
651.83 6	858.44	$(2,3,4^+)$	206.612	2+		0.125 13	^x 807.93 13				0.19 3
656.33 5	656.328	3-	0	1+		0.180 22	809.59 22	1002.595	$1^+, 2^-$	193.075 1+	0.11 4
^x 661.94 <i>12</i>						0.08 3	812.08 12	1106.676	2^{+}	294.561 2+	0.27 4
662.67 6	869.302	3+	206.612	2+		0.200 20	^x 817.91 10				0.34 4
665.29 7	880.598	2+	215.382	3+		0.112 14	819.04 15	819.117	2-	0 1+	0.26 5
^x 668.02 7						0.126 13	^x 821.24 <i>12</i>				0.30 5
671.45 7	1079.817	2	408.364	3+		0.139 21	845.01 8	1051.566	(1^{+})	206.612 2+	0.32 4
672.93 12	967.455	(3,4 ⁻)	294.561	2+		0.079 20	^x 849.92 22				0.11 3
674.18 6	1012.724	2-,3-	338.419	3-		0.230 19	858.7 <i>3</i>	1051.844	(2^{-})	193.075 1+	0.13 4
^x 675.32 8						0.073 22	^x 867.8 4				0.08 4
679.16 8	679.092	1-	0	1^{+}		0.136 17	^x 876.2 <i>6</i>				0.08 4
^x 680.56 18						0.069 21	880.86 ^a 16	880.598	2^{+}	$0 1^+$	0.22 4
686.31 8	765.467	2^{-}	79.139	2-		0.16 3	880.86 ^a 16	960.149	2-	79.139 2-	0.22 4
687.52 <i>3</i>	880.598	2+	193.075	1+	M1,E2	0.68 5	887.0 <i>3</i>	1079.817	2	193.075 1+	0.12 4
688.61 8	1013.210	$1^+, 2, 3^+$	324.495	3+		0.17 3	890.30 13	1096.844	$(3)^{+}$	206.612 2+	0.27 4
^x 690.82 12						0.126 19	895.19 10	974.331	2-	79.139 2-	0.48 4
693.28 18	899.941	1-	206.612	2+		0.054 16	902.7 <i>3</i>	1109.309	3+	206.612 2+	0.14 4
^x 695.63 8						0.118 18	918.88 22	1112.254	1+	193.075 1+	0.69 24
701.08 18	1109.309	3+	408.364	3+		0.054 16	923.70 20	1002.595	$1^+, 2^-$	79.139 2-	0.25 5
708.13 18	1002.595	$1^+, 2^-$	294.561	2+		0.057 17	933.25 25	1012.724	2-,3-	79.139 2-	0.20 4
^x 709.33 18						0.050 13	937.34 12	1143.94	1+	206.612 2+	0.43 5
713.60 18	1051.844	(2 ⁻)	338.419	3-		0.069 17	950.8 <i>3</i>	1143.94	1+	193.075 1+	0.22 7
715.90 15	715.806	$1^{-},2^{-}$	0	1^{+}		0.077 16	^x 953.81 25				0.18 5
718.68 12	1013.210	$1^+, 2, 3^+$	294.561	2+		0.14 3	960.5 <i>4</i>	1176.47	1,2	215.382 3+	0.23 8
^x 722.05 13						0.092 19	970.2 4	1176.47	1,2	206.612 2+	0.21 8
724.63 <i>3</i>	803.733	2-	79.139	2-	M1,E2	0.81 6	972.65 18	1051.844	(2^{-})	79.139 2-	0.31 5
732.58 9	1096.844	$(3)^{+}$	364.237	$3^+, 4^+$		0.133 20	1013.22 16	1013.210	$1^+, 2, 3^+$	$0 1^+$	0.63 10
^x 735.29 15						0.060 18	x1020.30 18				0.64 10
739.98 7	819.117	2^{-}	79.139	2-		0.210 20	1034.2 4	1034.411	3+	$0 1^+$	0.27 8
^x 744.49 8						0.188 23	1051.61 20	1051.566	(1^{+})	$0 1^+$	0.48 7
747.97 13	1112.254	1+	364.237	3+,4+		0.112 23	1079.56 25	1079.817	2	$0 1^+$	0.53 11
^x 749.59 15						0.097 24	1112.3 6	1112.254	1+	$0 1^+$	0.32 13
^x 753.44 12						0.13 3	^x 1136.7 3				0.45 9
756.98 20	1051.566	(1^{+})	294.561	2+		0.13 6	^x 1140.7 6				0.42 15
x757.80 15						0.18 6	^x 1231.61 22				0.37 8
765.78 18	765.467	2-	0	1^{+}		0.075 23	^x 1310.8 3				0.25 12
772.25 12	1096.844	$(3)^{+}$	324.495	3+		0.116 23	^x 1355.44 15				0.30 6
782.17 22	1106.676	2+	324.495	3+		0.11 4	^x 1462.64 15				0.37 8
^x 790.79 18						0.11 3	^x 1568.30 23				0.29 9
^x 793.84 25						0.10 4					

From ENSDF

 $^{108}_{47}\mathrm{Ag}_{61}$ -11

¹⁰⁷Ag(\mathbf{n},γ) E=th: secondary **1985Ma54** (continued)

$\gamma(^{108}\text{Ag})$ (continued)

[†] $E(\gamma)$ <80 are Si(Li) and electron spectrometer data. 80< $E(\gamma)$ <1141 are mainly curved crystal spectrometer data with some minor adjustments due to consideration of ce data. 1200< $E(\gamma)$ <1570 are Ge(Li) data. Quoted energies are relative to $E\gamma$ =341.722 *10* for a contaminant ⁴⁸Ti(n, γ) line. The % uncertainty in this calibration line has been added (in quadrature) by the evaluator to the statistical and peak-fitting uncertainties given by the authors.

[‡] Intensities per 100 n-captures in ¹⁰⁷Ag. Absolute values were obtained by normalizing to three transitions in the decay of ¹⁰⁸Ag g.s., 633 γ (1.76% *10*), 619 γ (0.26% 2) and 434 γ (0.50% 4). Separate I γ are not given by the authors. The uncertainty associated with this normalization procedure is not included in the uncertainties given in the γ listing but is included in the normalization factor. Note that, with this normalization procedure, $\Sigma I(\gamma+\text{ce to g.s.})=130$ *15* and $\Sigma I(\gamma+\text{ce to } 109 \text{ keV}, 127 \text{ y}^{-108}\text{ Ag})=7.6$ 8 of which 6.9 7 decays via $\varepsilon+\beta^+$. There is thus a total excess intensity of 37 *15*.

[#] From $\alpha(\exp)$ data based on relative Ice and I γ intensities normalized so that $\alpha(K)\exp(79\gamma)=0.272$ (E1 theory).

[@] M1,E2 from $\alpha(exp)$, ΔJ rules out M1.

& Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^a Multiply placed with undivided intensity.

^{*x*} γ ray not placed in level scheme.

¹⁰⁷Ag(n, γ) **E=th: secondary** 1985Ma54

Level Scheme

¹⁰⁷Ag(n,γ) E=th: secondary 1985Ma54

Level Scheme (continued)

 $^{108}_{47}\mathrm{Ag}_{61}$

¹⁰⁷Ag(\mathbf{n}, γ) E=th: secondary 1985Ma54

Level Scheme (continued)

 $^{108}_{47}\mathrm{Ag}_{61}$

¹⁰⁷Ag(n,γ) E=th: secondary 1985Ma54

Level Scheme (continued)

From ENSDF

 107 Ag(n, γ) E=th: secondary

1985Ma54

 107 Ag(n, γ) E=th: secondary 1985Ma54

From ENSDF

 $^{108}_{47}\mathrm{Ag}_{61}$ -19

From ENSDF

 107 Ag(n, γ) E=th: secondary

1985Ma54

 $^{108}_{47}\mathrm{Ag}_{61}\text{--}19$

 $^{108}_{47}\mathrm{Ag}_{61}$ -20

 $^{108}_{47}\mathrm{Ag}_{61}$ -20

From ENSDF

 107 Ag(n, γ) E=th: secondary

1985Ma54

¹⁰⁷Ag(\mathbf{n}, γ) E=th: secondary 1985Ma54

Level Scheme (continued)

¹⁰⁸₄₇Ag₆₁