¹⁰⁷Sb ε decay **2002Re14**

History						
Type Author		Citation	Literature Cutoff Date			
Full Evaluation	Jean Blachot	NDS 109, 1383 (2008)	1-Mar-2008			

Parent: ¹⁰⁷Sb: E=0.0; $J^{\pi}=(5/2^+)$; $T_{1/2}=4.0$ s 2; $Q(\varepsilon)=7.92\times10^3$ SY; $\%\varepsilon+\%\beta^+$ decay=100.0

2002RE14: Measured E γ , I γ , $\gamma\gamma$ using 3 large-volume HPGe detectors. Recoil products separated in mass and charge by Fragment Mass Analyzer.

1997Sh13: The ¹⁰⁷Sb was produced by fusion evaporation reactions induced by a ⁵⁸Ni beam on ⁵⁰Cr,⁵²Cr targets at GSI. On line mass separator with a "FEBIAD-E" ion source. Measured G.

The level scheme is from 2002RE14.

¹⁰⁷Sn Levels

E(level) [†]	\mathbf{J}^{π}		Comments	
0 151.24 <i>19</i> 703.72 <i>24</i> 818.02 <i>24</i> 970.42 <i>24</i> 1280.1 <i>3</i> 1453.9 <i>3</i> 1619.5? <i>3</i> 2045.5? <i>3</i>	$ \frac{5/2^{+}}{7/2^{+}} \\ (3/2^{+}) \\ (5/2^{+}) \\ (3/2^{+},5/2^{+}) \\ 3/2^{+} \\ (3/2^{+}) $	$d_{5/2}$ state. $g_{7/2}$ state. $d_{5/2}^3$ state. $g_{7/2}^{3/2}$ state. $d_{3/2}$ state.		

[†] From least-squares fit to $E\gamma's$.

ε, β^+ radiations

E(decay)	E(level)	Ιβ ⁺ ‡	Ιε [‡]	$\log ft^{\dagger}$	$I(\varepsilon + \beta^+)^{\dagger \ddagger}$	Comments
(5874 [#] <i>SY</i>)	2045.5?	1.4 3	0.077 22	5.70 16	1.5 3	av E β =2227 149; ε K=0.044 9; ε L=0.0057 12; ε M+=0.0015 3
(6300 [#] <i>SY</i>)	1619.5?	2.1 4	0.089 23	5.70 15	2.2 4	av Eβ=2431 150; εK=0.035 7; εL=0.0045 9; εM+=0.00115 22
(6466 <i>SY</i>)	1453.9	8.5 13	0.33 8	5.16 14	8.8 14	av Eβ=2511 150; εK=0.032 6; εL=0.0041 8; εM+=0.00105 19
(6639 <i>SY</i>)	1280.1	21 3	0.75 17	4.82 13	22 3	av E β =2595 150; ε K=0.029 6; ε L=0.0037 7; ε M+=0.00096 17
(6949 <i>SY</i>)	970.42	11.4 <i>17</i>	0.34 8	5.20 13	11.7 <i>17</i>	av $E\beta$ =2744 150; ε K=0.025 5; ε L=0.0032 6; ε M+=0.00082 14
(7101 <i>SY</i>)	818.02	20 3	0.57 12	5.00 13	21 3	av $E\beta$ =2818 <i>151</i> ; ε K=0.023 <i>4</i> ; ε L=0.0030 <i>5</i> ; ε M+=0.00077 <i>13</i>
(7216 <i>SY</i>)	703.72	7.9 13	0.21 5	5.45 13	8.1 <i>13</i>	av E β =2873 151; ε K=0.022 4; ε L=0.0028 5; ε M+=0.00073 12
(7768 [#] <i>SY</i>)	151.24	<3.4		>6.0	<3.4	av $E\beta$ =3141 151; ε K=0.017 3; ε L=0.0022 4; ε M+=0.00057 9
						I($\varepsilon + \beta^+$): 2002Re14 give 5.5 <i>3</i> or 6.9 <i>4</i> ; but the evaluator obtain 1.5 <i>19</i> from intensity balance assuming 151 γ as M1 or E2.
(7920 <i>SY</i>)	0	23 9	0.4 2	5.21 20	23 9	av E β =3215 <i>151</i> ; ε K=0.0163 23; ε L=0.0021 3; ε M+=0.00053 8 I(ε + β ⁺): based on log <i>ft</i> =5.1-5.4 for a similar transition in ¹¹¹ Sb decay to ¹¹¹ Sn.

107 Sb ε decay 2002Re14 (continued)

ε, β^+ radiations (continued)

[†] Deduced by the evaluator from intensity balance and the results of log ft code.

[±] Absolute intensity per 100 decays.
[#] Existence of this branch is questionable.

$\gamma(^{107}{\rm Sn})$

I γ normalization: $\Sigma(I(\gamma+ce) \text{ of } \gamma' \text{ s to } g.s.)=77.9$, assuming $\%\varepsilon+\beta^+$ feeding to g.s.=23.9.

Ι _γ ‡	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.	α #
64 <i>3</i> 3 <i>1</i>	151.24 703.72	7/2 ⁺ (3/2 ⁺)	0 151.24	5/2+ 7/2+	[M1,E2]	0.28 10
63 <i>3</i>	818.02	$(5/2^+)$	151.24	7/2+		
34 2	703.72	$(3/2^+)$	0	$5/2^{+}$		
34 2	818.02	$(5/2^+)$	0	$5/2^{+}$		
92	970.42	$(3/2^+, 5/2^+)$	151.24	$7/2^{+}$		
44 2	970.42	$(3/2^+, 5/2^+)$	0	$5/2^{+}$		
100	1280.1	$3/2^{+}$	0	$5/2^{+}$		
40 <i>3</i>	1453.9	$(3/2^+)$	0	$5/2^{+}$		
10 <i>I</i>	1619.5?		0	$5/2^{+}$		
71	2045.5?		0	$5/2^{+}$		
	$ I_{\gamma}^{\ddagger} \\ \hline $	$\begin{array}{c} \underline{I_{\gamma}^{\ddagger}} \\ \underline{64\ 3} \\ 3\ l \\ 64\ 3 \\ 3\ l \\ 703.72 \\ 63\ 3 \\ 818.02 \\ 34\ 2 \\ 703.72 \\ 34\ 2 \\ 818.02 \\ 9\ 2 \\ 970.42 \\ 44\ 2 \\ 970.42 \\ 100 \\ 1280.1 \\ 40\ 3 \\ 1453.9 \\ 10\ l \\ 1619.5? \\ 7\ l \\ 2045.5? \end{array}$	$\begin{array}{c cccc} I_{\gamma}^{\ddagger} & E_i(\text{level}) & J_i^{\pi} \\ \hline 64 \ 3 & 151.24 & 7/2^+ \\ \hline 3 \ 1 & 703.72 & (3/2^+) \\ \hline 63 \ 3 & 818.02 & (5/2^+) \\ \hline 34 \ 2 & 703.72 & (3/2^+) \\ \hline 34 \ 2 & 818.02 & (5/2^+) \\ \hline 9 \ 2 & 970.42 & (3/2^+,5/2^+) \\ \hline 44 \ 2 & 970.42 & (3/2^+,5/2^+) \\ \hline 100 & 1280.1 & 3/2^+ \\ \hline 40 \ 3 & 1453.9 & (3/2^+) \\ \hline 10 \ 1 & 1619.5? \\ \hline 7 \ 1 & 2045.5? \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

[†] Already seen by by 1997Sh13.
[‡] For absolute intensity per 100 decays, multiply by 0.22 3.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹⁰⁷Sb ε decay 2002Re14

Decay Scheme

 $^{107}_{50}{
m Sn}_{57}$