### $^{58}$ Ni( $^{58}$ Ni,2 $\alpha$ p $\gamma$ ) 2000La27

| History         |              |                      |                        |  |  |  |  |
|-----------------|--------------|----------------------|------------------------|--|--|--|--|
| Туре            | Author       | Citation             | Literature Cutoff Date |  |  |  |  |
| Full Evaluation | Jean Blachot | NDS 109, 1383 (2008) | 1-Mar-2008             |  |  |  |  |

2000La27: <sup>58</sup>Ni(<sup>58</sup>Ni, $2\alpha p\gamma$ ) E=250 MeV.

Measured E $\gamma$ , I $\gamma$ ,  $\gamma\gamma$  and  $\gamma\gamma(\theta)$ (DCO) using GAMMASPHERE array consisting of 83 high purity Compton-suppressed Ge detectors, and MICROBALL  $4\pi$  array of 95 CsI(T1) scintillators was used to detect protons and  $\alpha$  particles.

1994Se01:  ${}^{54}$ Fe( ${}^{58}$ Ni,xn $\gamma$ ) E=270 MeV.

Measured  $\gamma$ , "NORDBALL"; excit,  $\gamma(\theta)$ , 20 Compton-suppressed Ge 52 BaF2 as multiplicity filter. The level scheme is from 2000La27.

## <sup>107</sup>Sb Levels

| E(level) <sup>‡</sup>         | $\mathbf{J}^{\pi}$    |
|-------------------------------|-----------------------|
| 0.0#                          | 5/2+                  |
| $0.0^{-1}$                    | 5/2.                  |
| /68.62 <sup>+</sup> 10        | 1/2 <sup>+</sup>      |
| 1058.28 15                    | 9/2                   |
| 1388.97° 15                   | 9/21                  |
| 1605.37 21                    | 11/2-                 |
| 1790.45 17                    | $11/2^{+}$            |
| 10/2.4221                     | 12/2+                 |
| 1900.00 18                    | $13/2^{+}$            |
| $2163.87^{\circ}$ 19          | $13/2^{+}$            |
| $2239.54^{\circ} 20$          | 15/2*                 |
| 2535.40 <sup>1</sup> 23       | 17/21                 |
| 2621.29° 23                   | $15/2^{-}$            |
| 2745.651# 22                  | $17/2^{+}$            |
| 28/8.03                       |                       |
| 3306.73'' 23                  | 10/2+                 |
| 3377.68 24                    | 19/2+                 |
| $3487.11^{b} 24$              | $19/2^{-}$            |
| 3551.21 <sup>†</sup> 25       |                       |
| $3661.5^{\dagger}$ 3          | $21/2^{+}$            |
| 3732.6 4                      | 21/2                  |
| 3779.38 <sup>†b</sup> 23      | $21/2^{-}$            |
| 3936.6 <i>3</i>               |                       |
| 4100.3 <sup>†b</sup> 3        | $23/2^{-}$            |
| 4215.5 <sup>@</sup> 3         |                       |
| 4234.7 <sup>&amp;</sup> 4     |                       |
| 4306.6 <i>3</i>               |                       |
| 4442.7 3                      | 25/2-                 |
| 4607.74 3                     | $25/2^{-}$            |
| 4889.4 4                      |                       |
| 5131 1 3                      |                       |
| 5208 1 <sup>b</sup> $\Lambda$ | 27/2-                 |
| 5674.4 <sup><i>a</i></sup> 4  | $\frac{27}{29}/2^{-}$ |
| 5768.9 4                      | , <b>-</b>            |
| 5967.6 <sup>b</sup> 4         | 31/2-                 |
| 6097.7 4                      |                       |

#### <sup>58</sup>Ni(<sup>58</sup>Ni, $2\alpha p\gamma$ ) 2000La27 (continued)

## <sup>107</sup>Sb Levels (continued)

| E(level) <sup>‡</sup>                        | $\mathbf{J}^{\pi}$               | Comments                  |  |  |  |  |
|----------------------------------------------|----------------------------------|---------------------------|--|--|--|--|
| 6379.6 <sup><i>a</i></sup> 4                 | $33/2^{-}$                       |                           |  |  |  |  |
| 6437.9 <i>4</i>                              |                                  |                           |  |  |  |  |
| 7269.1 <sup>b</sup> 6                        | $35/2^{-}$                       |                           |  |  |  |  |
| 7540.8 <sup>a</sup> 5                        | 37/2-                            |                           |  |  |  |  |
| 7900.6 <sup>b</sup> 6                        |                                  |                           |  |  |  |  |
| 8407.4 <sup><i>a</i></sup> 5                 | $41/2^{-}$                       |                           |  |  |  |  |
| 9863.5 <sup>a</sup> 7                        |                                  |                           |  |  |  |  |
| 0.0+x                                        |                                  | Additional information 1. |  |  |  |  |
| 572.0+x 5                                    |                                  |                           |  |  |  |  |
| 815.6+x 8                                    |                                  |                           |  |  |  |  |
| $2041.4 + x^{\circ} 7$                       | $\geq 3'/2$                      |                           |  |  |  |  |
| $310/./+X^{\circ}/$                          | $\geq 41/2$                      |                           |  |  |  |  |
| $4440.1 \pm x = 0$<br>5882 6 $\pm x^{c} = 0$ | $\geq 43/2$<br>>10/2             |                           |  |  |  |  |
| $7434 8 + x^{c} 10$                          | $\geq \frac{1}{2} = \frac{1}{2}$ |                           |  |  |  |  |
| $9228.2 + x^{c}$ 13                          | $\geq 57/2$                      |                           |  |  |  |  |
| 11491.2+x <sup>c</sup> 16                    | $\geq 61/2$                      |                           |  |  |  |  |
| 14217.2+x <sup>c</sup> 19                    | $\geq 65/2$                      |                           |  |  |  |  |
| 0.0+y                                        |                                  | Additional information 2. |  |  |  |  |
| 328.5+y <sup>d</sup> 7                       | $\geq 17/2$                      |                           |  |  |  |  |
| 573.1+y 3                                    |                                  |                           |  |  |  |  |
| 720.8+y <sup>d</sup> 7                       | $\geq 19/2$                      |                           |  |  |  |  |
| 1089.3+y <sup>d</sup> 5                      | $\geq 21/2$                      |                           |  |  |  |  |
| 1459.8+y <sup>d</sup> 6                      | ≥23/2                            |                           |  |  |  |  |
| 1851.0+y <sup>d</sup> 7                      | ≥25/2                            |                           |  |  |  |  |
| 2281.8+y <sup>d</sup> 7                      | ≥27/2                            |                           |  |  |  |  |
| 2748.1+y <sup>d</sup> 9                      | ≥29/2                            |                           |  |  |  |  |
| 3194.2+y <b>d</b> 9                          | ≥31/2                            |                           |  |  |  |  |
| 3284.9+y 11                                  | ≥31/2                            |                           |  |  |  |  |
| 3668.9+y <sup>d</sup> 10                     | ≥33/2                            |                           |  |  |  |  |
| ÷                                            |                                  | 10045-01                  |  |  |  |  |
| t Levels already given by 19945e01.          |                                  |                           |  |  |  |  |
| * From least-so                              | quares fit                       | to $E\gamma$ 's.          |  |  |  |  |
| " Band(A): $\gamma$ s                        | equence                          | based on $5/2^+$ .        |  |  |  |  |

<sup>(a)</sup> Band(A):  $\gamma$  sequence based on  $3/2^{-1}$ . <sup>(a)</sup> Band(B):  $\gamma$  sequence based on  $7/2^{+}$ . <sup>(a)</sup> Band(C):  $\gamma$  sequence based on  $9/2^{+}$ . <sup>(a)</sup> Band(D):  $\gamma$  sequence based on  $25/2^{-1}$ . <sup>(b)</sup> Band(E):  $\gamma$  sequence based on  $11/2^{-1}$ . <sup>(c)</sup> Band(F):  $\Delta J=2$ , Decoupled band. Configuration= $\pi[h_{11/2}(g_{9/2}^{-2})(g_{7/2}d_{5/2}^{-2}) \nu[(g_{7/2}d_{5/2})^4(h_{11/2}^2)]$ .

<sup>d</sup> Band(G):  $\Delta J=1$  Band,  $\pi g_{9/2}^{-1} \pi (g_{7/2} d_{5/2})^2$ .

## <sup>58</sup>Ni(<sup>58</sup>Ni,2α**p**γ) **2000La27** (continued)

# $\gamma(^{107}\text{Sb})$

| Eγ                   | $I_{\gamma}$ | E <sub>i</sub> (level)           | $\mathbf{J}_i^{\pi}$ | $\mathrm{E}_{f}$ | ${ m J}_f^\pi$                    | Mult.                    | Comments     |
|----------------------|--------------|----------------------------------|----------------------|------------------|-----------------------------------|--------------------------|--------------|
| $(47^{\dagger} I)$   |              | 3779.38                          | $21/2^{-}$           | 3732.6           |                                   |                          |              |
| $(76.6^{\dagger}.8)$ |              | 2239 54                          | $15/2^+$             | 2163.87          | $13/2^{+}$                        | M1+F2                    |              |
| 109.9 2              | <2.0         | 1900.06                          | $13/2^+$             | 1790.45          | $11/2^+$                          | M1+E2                    |              |
| 227.1 2              | 3.0 6        | 4442.7                           | /-                   | 4215.5           | /-                                |                          |              |
| 228.2 <i>3</i>       | <2.0         | 3779.38                          | $21/2^{-}$           | 3551.21          |                                   |                          |              |
| 257.4 2              | 1.1 <i>1</i> | 2878.6                           |                      | 2621.29          | $15/2^{-}$                        |                          |              |
| 289.8 2              | 5.0 <i>3</i> | 1058.28                          | 9/2+                 | 768.62           | 7/2+                              | M1+E2                    |              |
| 291.4 2              | 7.5 5        | 2163.87                          | $13/2^{+}$           | 1872.42          |                                   |                          |              |
| 292.1 2              | 4.9 4        | 3779.38                          | $21/2^{-}$           | 3487.11          | 19/2-                             | M1+E2                    |              |
| 293.3 2              | 2.6 2        | 5967.6                           | 31/2-                | 5674.4           | 29/2-                             |                          |              |
| 294.6 2              | <2.0         | 1900.06                          | $13/2^+$             | 1605.37          | $11/2^{-1}$                       | E1                       |              |
| 295.9.2              | 34.2         | 2535.40                          | $17/2^{+}$           | 2239.54          | 15/2+                             | M1+E2                    |              |
| 297.1 2              | <2.0         | 3779.38                          | $\frac{21}{2}$       | 3482.4           | 21/2-                             | M1 - E2                  |              |
| 320.9 2              | 502          | 4100.3                           | 23/2<br>0/2+         | 3/19.38          | $\frac{21}{2}$                    | M1 + E2                  | DCU=0.04 3.  |
| 330.9 2              | 54 2         | 1300.97                          | 9/2<br>15/2+         | 1038.28          | 9/2<br>12/2+                      | M1 + E2<br>M1 + E2       |              |
| 368 5 1              | 54 5<br>6 0  | 2239.34<br>1080 3±v              | 23/2                 | 720 8±v          | $\frac{15/2}{10/2}$               | $M1\pm E2$<br>$M1\pm E2$ |              |
| 370 5 3              | 6.0.5        | $1089.3 \pm y$<br>$1459.8 \pm y$ | $\geq 21/2$<br>>23/2 | $1089.3 \pm v$   | $\geq 19/2$<br>>21/2              | M1+E2<br>M1+F2           |              |
| 373.2.2              | <2.0         | 2163.87                          | $\frac{223}{2}$      | 1790.45          | $\frac{221}{2}$ 11/2 <sup>+</sup> | M1+E2                    |              |
| 384.4.5              | 1.8 4        | 3668.9+v                         | >33/2                | 3284.9+v         | >31/2                             | M1+E2                    |              |
| 391.2 2              | 8.0 7        | 1851.0+y                         | $\geq 25/2$          | 1459.8+y         | $\geq 23/2$                       | M1+E2                    |              |
| 392.3 <i>3</i>       | 8.0 7        | 720.8+y                          | $\geq 19/2$          | 328.5+y          | $\geq 17/2$                       | M1+E2                    |              |
| 401.4 2              | <2.0         | 1790.45                          | $11/2^{+}$           | 1388.97          | 9/2+                              | M1+E2                    |              |
| 401.9 2              | 15 <i>I</i>  | 3779.38                          | $21/2^{-}$           | 3377.68          | $19/2^{+}$                        | E1                       | DCO=0.60 4.  |
| 430.8 <i>3</i>       | 4.5 3        | 2281.8+y                         | $\geq 27/2$          | 1851.0+y         | $\geq 25/2$                       | M1+E2                    |              |
| 438.8 2              | 10.1 6       | 4100.3                           | $23/2^{-}$           | 3661.5           | $21/2^{+}$                        | E1                       | DCO=0.66 5.  |
| 446.0 4              | 2.2 4        | 3194.2+y                         | ≥31/2                | 2748.1+y         | ≥29/2                             | M1+E2                    |              |
| 448.9 2              | 2.6 2        | 2239.54                          | $15/2^+$             | 1790.45          | $11/2^{+}$                        | E2                       |              |
| 466.4 5              | 3.3 4        | 2748.1+y                         | $\geq 29/2$          | 2281.8+y         | ≥27/2                             | M1+E2                    |              |
| 472.8 2              | 13 2         | 3779.38                          | 21/2-                | 3306.73          | > 21/2                            | M1 - E2                  |              |
| 4/4./ 4              | 2.0.5        | 3668.9+y                         | ≥33/2                | 3194.2+y         | $\geq 31/2$                       | MI+E2                    |              |
| 403.4 2              | 10 1         | 2745.65                          | $17/2^{+}$           | 1300.97          | 9/2<br>15/2+                      | M1 + E2                  |              |
| 506.0.2              | 273          | 2745.05                          | 1//2                 | 2239.54          | 15/2                              | IVII TEZ                 |              |
| 507.5.2              | 27.2         | 4607.7                           | 25/2-                | 4100 3           | 23/2-                             | M1+F2                    | DCO=0.59.3   |
| 516.2.4              | <1.0         | 1089.3 + v                       | >21/2                | 573.1+v          | 23/2                              | 1011 1 22                |              |
| 523.3 2              | 5.0 5        | 5131.1                           | /-                   | 4607.7           | $25/2^{-}$                        |                          |              |
| 537.1 5              | 1.8 5        | 3284.9+y                         | ≥31/2                | 2748.1+y         | ≥29/2                             |                          |              |
| 547.0 2              | 11 <i>I</i>  | 1605.37                          | $11/2^{-}$           | 1058.28          | $9/2^{+}$                         | E1                       |              |
| 560.9 2              | 5.3 4        | 3306.73                          |                      | 2745.65          | $17/2^{+}$                        |                          |              |
| 572.0 5              | <1.0         | 572.0+x                          |                      | 0.0+x            |                                   |                          |              |
| 573.1 <i>3</i>       | <1.0         | 573.1+y                          |                      | 0.0+y            |                                   |                          |              |
| 573.2 2              | 3.0 3        | 4234.7                           |                      | 3661.5           | $21/2^{+}$                        |                          |              |
| 620.2 2              | <2.0         | 1388.97                          | 9/2+                 | 768.62           | 7/2+                              | M1+E2                    |              |
| 629.8 3              | 2.9.2        | 3936.6                           |                      | 3306.73          | 25/2-                             |                          |              |
| 631.5 2              | 2.8 2        | /900.6                           |                      | 7269.1           | 35/2                              |                          |              |
| 037.82<br>646.02     | 8.20<br>060  | 5080 8                           |                      | 5151.1<br>4442 7 |                                   |                          |              |
| 65472                | 303          | 1880 1                           |                      | 4442.7<br>4234 7 |                                   |                          |              |
| 664 5 4              | <20          | 4215 5                           |                      | 3551 21          |                                   |                          |              |
| 669.0 2              | 2.4.2        | 6437.9                           |                      | 5768.9           |                                   |                          |              |
| 688.4 2              | 5.4 4        | 5131.1                           |                      | 4442.7           |                                   |                          |              |
| 705.2 2              | 11.3 8       | 6379.6                           | $33/2^{-}$           | 5674.4           | $29/2^{-}$                        | E2                       | DCO=1.09 12. |
| 721.1 2              | 6.5 5        | 2621.29                          | $15/2^{-}$           | 1900.06          | $13/2^{+}$                        | E1                       |              |
| 741.4 2              | 6.5 5        | 3487.11                          | $19/2^{-}$           | 2745.65          | $17/2^{+}$                        | E1                       |              |

Continued on next page (footnotes at end of table)

#### <sup>58</sup>Ni(<sup>58</sup>Ni, $2\alpha p\gamma$ ) 2000La27 (continued)

## $\gamma(^{107}\text{Sb})$ (continued)

| $E_{\gamma}$      | $I_{\gamma}$ | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $\mathbf{E}_{f}$    | $\mathbf{J}_f^{\pi}$ | Mult.    | Comments                                  |
|-------------------|--------------|------------------------|----------------------|---------------------|----------------------|----------|-------------------------------------------|
| 755.6 2           | 3.9 4        | 4306.6                 |                      | 3551.21             |                      |          |                                           |
| 759.4 2           | 7.8 6        | 5967.6                 | $31/2^{-}$           | 5208.1              | $27/2^{-}$           | E2       |                                           |
| 768.5 <i>3</i>    | 11.3 5       | 768.62                 | $7/2^{+}$            | 0.0                 | $5/2^{+}$            | M1+E2    |                                           |
| 771.5 2           | 7.0 5        | 3306.73                |                      | 2535.40             | $17/2^{+}$           |          |                                           |
| 775.2 2           | 5.5 5        | 2163.87                | $13/2^{+}$           | 1388.97             | 9/2+                 | E2       |                                           |
| 781.1 <i>3</i>    | 3.6 8        | 4442.7                 |                      | 3661.5              | $21/2^+$             |          |                                           |
| 783.8 <i>3</i>    | <2.0         | 5089.8                 |                      | 4306.6              |                      |          |                                           |
| 805.8 2           | 15 <i>1</i>  | 3551.21                |                      | 2745.65             | $17/2^{+}$           |          |                                           |
| 822 <sup>‡</sup>  | <1.0         | 2281.8+y               | ≥27/2                | 1459.8+y            | $\geq 23/2$          | E2       |                                           |
| 837.7 2           | 4.3 5        | 4215.5                 |                      | 3377.68             | $19/2^{+}$           |          |                                           |
| 841.7 2           | 82 5         | 1900.06                | $13/2^{+}$           | 1058.28             | $9/2^{+}$            | E2       |                                           |
| 842.4 2           | 4.2 6        | 3377.68                | $19/2^{+}$           | 2535.40             | $17/2^{+}$           | M1+E2    |                                           |
| 845.7 2           | 16 <i>1</i>  | 2745.65                | $17/2^{+}$           | 1900.06             | $13/2^{+}$           | E2       |                                           |
| 854.2 <i>3</i>    | 0.9 1        | 3732.6                 |                      | 2878.6              |                      |          |                                           |
| 865.7 2           | 4.2 4        | 3487.11                | 19/2-                | 2621.29             | $15/2^{-}$           | E2       | DCO=1.06 14 for 865.7+866.6.              |
| 866.6 2           | 4.4 5        | 8407.4                 | $41/2^{-}$           | 7540.8              | 37/2-                | E2       | DCO=1.06 14 for 866.6+865.7.              |
| 891.4 2           | 6.3 6        | 4442.7                 |                      | 3551.21             |                      |          |                                           |
| 912 <sup>‡</sup>  | <1.0         | 3194.2+y               | ≥31/2                | 2281.8+y            | $\geq 27/2$          | E2       |                                           |
| 921               |              | 3668.9+y               | ≥33/2                | 2748.1+y            | ≥29/2                |          | $E_{\gamma}$ : From Figure 1 of 2000La27. |
| 947.4 5           | <2.0         | 3482.4                 |                      | 2535.40             | $17/2^{+}$           |          |                                           |
| 1007.9 2          | 4.1 4        | 6097.7                 |                      | 5089.8              |                      |          |                                           |
| 1016.0 4          | 4.3 4        | 2621.29                | $15/2^{-}$           | 1605.37             | $11/2^{-}$           | E2       |                                           |
| 1021.8 2          | 4.7 5        | 1790.45                | $11/2^{+}$           | 768.62              | 7/2+                 | E2       |                                           |
| 1058.2 2          | 100          | 1058.28                | 9/2+                 | 0.0                 | $5/2^{+}$            | E2       |                                           |
| 1066.7 2          | 16 <i>1</i>  | 5674.4                 | 29/2-                | 4607.7              | $25/2^{-}$           | E2       |                                           |
| 1067.4 3          | 4.8 5        | 3306.73                |                      | 2239.54             | 15/2+                |          | DCO=1.04 11.                              |
| 1107.7 2          | 12.4 8       | 5208.1                 | $27/2^{-}$           | 4100.3              | $\frac{23}{2}^{-}$   | E2       |                                           |
| 1111.0 4          | 3.4 3        | 3732.6                 | 01/0+                | 2621.29             | $15/2^{-1}$          | 50       | DCO 0.05 10                               |
| 1126.0 2          | 18 1         | 3661.5                 | 21/2                 | 2535.40             | $1/2^{-1}$           | E2<br>E2 | DCO=0.97 12.                              |
| 1120.5 5          | 2.5 5        | 310/./+X               | $\frac{241}{2}$      | 2041.4+x            | $\geq 31/2$          | E2<br>E2 | DCO 1.09.10                               |
| 1150.1 2          | 735          | 5577.08<br>7540.8      | 19/2                 | 2239.34<br>6370.6   | $\frac{13}{2}$       | E2<br>E2 | $DCO=1.08 \ IO.$                          |
| 1225.8.4          | 102          | 7040.8                 | >37/2<br>>37/2       | 815.6 LV            | 55/2                 | L2       | DCO-0.99 9.                               |
| 1223.0 4          | 3/3          | 2041.4±x<br>3770.38    | 257/2<br>$21/2^{-}$  | 2535.40             | $17/2^{+}$           | M2       |                                           |
| 1278 4 3          | 3.45         | $4446.1 \pm v$         | >45/2                | 2555.40<br>3167 7+x | >41/2                | F2       |                                           |
| 1301 5 4          | 433          | 7269 1                 | 25/2                 | 5967.6              | $\frac{2}{31/2}$     | E2<br>E2 |                                           |
| 1389 1 2          | 12.6.9       | 1388 97                | $9/2^+$              | 0.0                 | $5/2^+$              | E2       |                                           |
| 1436.5.4          | 3.5.4        | 5882.6+x               | >49/2                | 4446.1 + x          | >45/2                | E2       |                                           |
| 1456.1 4          | <2.0         | 9863.5                 | // _                 | 8407.4              | $\frac{-10}{2}$      |          |                                           |
| 1469.4 4          | <1.0         | 2041.4+x               | ≥37/2                | 572.0+x             | , =                  |          |                                           |
| 1552.1 4          | 2.9 4        | 7434.8+x               | ≥53/2                | 5882.6+x            | ≥49/2                | E2       |                                           |
| 1793.4 8          | 1.0 3        | 9228.2+x               | ≥57/2                | 7434.8+x            | ≥53/2                | E2       |                                           |
| 2263 1            | <1.0         | 11491.2+x              | ≥61/2                | 9228.2+x            | ≥57/2                | E2       |                                           |
| 2726 <sup>‡</sup> | <1.0         | 14217.2+x              | ≥65/2                | 11491.2+x           | ≥61/2                | E2       |                                           |

<sup>†</sup> Transition not observed directly; its existence is inferred from  $\gamma\gamma$  coin data. <sup>‡</sup> Placement of transition in the level scheme is uncertain.





 $^{107}_{51}{
m Sb}_{56}$ 





 $^{107}_{51}{\rm Sb}_{56}$ 

### <sup>58</sup>Ni(<sup>58</sup>Ni,2αpγ) 2000La27

Band(F):  $\Delta J=2$ , Decoupled band ≥65/2 14217.2+x 2726 ≥61/2 11491.2+x 2263  $\geq$ 57/2 9228.2+x 1793  $\geq$ 53/2 7434.8+x 1552 ≥49/2 5882.6+x 1436 <u>≥</u>45/2 4446.1+x 1278 ≥**41/2** 3167.7+x 1126 <u>≥</u>37/2 2041.4+x



 $^{107}_{51}{\rm Sb}_{56}$ 

## $^{58}$ Ni( $^{58}$ Ni,2 $\alpha$ p $\gamma$ ) 2000La27 (continued)



 $^{107}_{51}{
m Sb}_{56}$