²⁴⁸Cm SF decay 2005Ur02,2006Pi14

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Jean Blachot	NDS 109, 1383 (2008)	1-Mar-2008				

Parent: ²⁴⁸Cm: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=3.48\times10^5$ y 6; %SF decay=?

2005Ur02: Measured E γ , I γ , $\gamma\gamma$, $\gamma\gamma(\theta)$, $\gamma\gamma(\ln \text{ pol})$, conversion-electron coefficients using EUROGAM2 array with four additional low-energy photon (LEP) detectors.

2006Pi14: ¹⁰⁷Mo nuclei produced in thermal-neutron induced fission of ²⁴¹Pu target. Lohengrin mass spectrometer used to separate fission fragments according to mass/charge ratio. Measured γ (ce) coincidences and lifetime for a 65.4 level.

Gamma cascades are mostly in agreement with those from 2004Hu02: but the spin-parity assignments including that of the ground state, and associated band assignments are all different.

1991Ho16: 6.5E+4 fission/s. Argonne Notre Dame G facility 10 Bi-germinate-suppressed Ge detectors, 2 LEPS, 1 array of 50 Bi-Ge scin used as a multiplicity filter.

All data are from 2005Ur02 unless otherwise stated.

¹⁰⁷Mo Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0 ^b	5/2+		
65.4	1/2+	420 ns <i>30</i>	E(level), J^{π} , $T_{1/2}$: from 2006Pi14. Half-life measured by time spectrum of the isomer. This level is different from the 66.0, (3/2 ⁺) level.
66.00 ^a 9	$(3/2^+)$		
152.10 [°] 8	7/2+		
165.40 ^{x} 9	$(5/2^+)$		
319.70 ^a 10	$(7/2^+)$		
341.01 ⁰ 10	9/2+		
348.30 [@] 9	7/2-		
458.50 [#] 10	9/2-		
491.71 ^{&} <i>13</i>	$(9/2^+)$		
566.59 [°] 13	$11/2^{+}$		
581.90 [@] 11	$11/2^{-}$		
730.48 ^{<i>a</i>} 14	$(11/2^+)$		
819.81 ⁰ 14	$13/2^{+}$		
838.00 [#] 12	$13/2^{-}$		
969.61 ^{&} 16	$(13/2^+)$		
987.80 [@] 14	$15/2^{-}$		
1117.79 [°] 16	$15/2^{+}$		
1286.5 ^{<i>a</i>} 6	$(15/2^+)$		
1393.0 [#] 3	$17/2^{-}$		
1422.6 ^b 4	$17/2^{+}$		
1545.29 [@] 17	19/2-		
1590.3 ^{&} 4	$(17/2^+)$		
1796.8 [°] 4	19/2+		
1974.3 ^{<i>a</i>} 8	$(19/2^+)$		
2102.2" 8	21/2-		
2142.60 11	$(21/2^+)$		
2244.0 ^w 4	$23/2^{-}$		
2340.8 ^{&} 6	$(21/2^+)$		
2586.8° 11	$(23/2^+)$		
3073.0 ^w 11	$(27/2^{-})$		

²⁴⁸Cm SF decay **2005Ur02,2006Pi14** (continued)

¹⁰⁷Mo Levels (continued)

[†] from least-squares fit to $E\gamma$'s (by evaluator) $\Delta E\gamma$ =0.1 keV for strong transitions and up to 0.5 keV for weak γ rays (authors' note). The evaluator has assigned uncertainties to γ -ray energies based on the following criterion: $\Delta E\gamma$ =0.1 keV for $I\gamma$ >20, 0.3 for $I\gamma$ =10-20 and 0.5 for $I\gamma$ <10. For γ rays quoted to the nearest keV, $\Delta E\gamma$ =1 keV has been assumed.

- [‡] as given by 2005Ur02,2006Pi14.
- [#] Band(A): v7/2[523], $\alpha = +1/2$.
- [@] Band(a): $\nu 7/2[523]$, $\alpha = -1/2$.
- [&] Band(B): $\nu 3/2[411]$, $\alpha = +1/2$.
- ^{*a*} Band(b): v3/2[411], $\alpha = -1/2$.
- ^b Band(C): v5/2[413], $\alpha = +1/2$.
- ^c Band(c): v5/2[413], $\alpha = -1/2$.

$\gamma(^{107}\text{Mo})$

E_{γ}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [†]	α #	Comments
65.4 [‡]		65.4	1/2+	0.0	5/2+	E2	5.56	α (K)=4.14 6; α (L)=1.173 17; α (M)=0.214 3; α (N+)=0.0300 5 α (N)=0.0294 5; α (O)=0.000554 8 E _{γ} ,Mult.: from 2006Pi14. Mult.: K/L=3.2 4 in agreement with theoretical value
66.0 <i>1</i>	31 <i>3</i>	66.00	(3/2+)	0.0	5/2+	M1+E2		of 3.56 for E2. $\alpha(K)\exp=1.6 + 7 - 8$ $\alpha(K)=2.4$ 17; $\alpha(L)=0.6$ 6; $\alpha(M)=0.11$ 10; $\alpha(N+)=0.016$ 14 $\alpha(N)=0.015$ 13; $\alpha(O)=0.00033$ 21 $\alpha(K)\exp$ from rate of intensities K α x ray line in Mo
99.4 <i>3</i>	16 2	165.40	(5/2+)	66.00	(3/2+)	M1+E2		and 66γ in a gated spectrum. $(66.0\gamma)(253.7\gamma)(\theta)$: A ₂ =-0.03 2, A ₄ =+0.04 3. $\alpha(K)=0.6$ 4; $\alpha(L)=0.11$ 9; $\alpha(M)=0.020$ 16; $\alpha(N+)=0.0029$ 22 $\alpha(N)=0.0029$ 22; $\alpha(O)=9.E-5$ 6
								 Mult.: from Iγ(66)/Iγ(99)=0.95 15 in a gated mode. Similar photon intensities for the two lines suggest same mult for 66γ and 99γ. (99.4γ)(326.3γ)(θ): A₂=-0.05 2, A₄=+0.05 4.
110.2 [‡] <i>I</i>	70 4	458.50	9/2-	348.30	7/2-	M1+E2		$\alpha(\exp)=0.22$ 4; $\alpha(K)\exp=0.9$ +7-4 $\alpha(\exp)$ from intensity balance; $\alpha(K)\exp$ from ratio of intensities K α x ray line in Mo and 110 γ when gated with 123 γ and 406 γ . (110.2 γ)(379.5 γ)(θ): A ₂ =-0.06 2, A ₄ =+0.04 3.
123.4 [‡] <i>1</i>	65 4	581.90	11/2-	458.50	9/2-	M1+E2		α(exp)=0.27 8; α(K)exp=0.8 +7-4 α(K)=0.29 18; α(L)=0.05 4; α(M)=0.009 6; α(N+)=0.0013 9 α(N)=0.0012 9; α(O)=4.5×10-5 24 α(exp) from intensity balance; α(K)exp from ratio of intensities Kα x ray line in Mo and 123γ in a gated spectrum. (1224 × 100 ×
149.8 [‡] 5	71	987.80 1545 29	$\frac{15}{2^{-}}$	838.00	$\frac{13}{2^{-}}$	D		$(123.4\gamma)(405.9\gamma)(\theta): A_2 = -0.07 2, A_4 = +0.02 3.$ $(149.8\gamma)(379.5\gamma)(\theta): A_2 = -0.01 2, A_4 = +0.01 3.$
152.1 [‡] 1	96 <i>5</i>	152.10	7/2+	0.0	5/2+	M1+E2		$\begin{aligned} &\alpha(\exp)=0.34\ 7\\ &\alpha(K)=0.15\ 8;\ \alpha(L)=0.021\ 14;\ \alpha(M)=0.0039\ 24;\\ &\alpha(N+)=0.0006\ 4\\ &\alpha(N)=0.0006\ 4;\ \alpha(O)=2.3\times10^{-5}\ 11 \end{aligned}$

Continued on next page (footnotes at end of table)

²⁴⁸Cm SF decay 2005Ur02,2006Pi14 (continued)

$\gamma(^{107}\text{Mo})$ (continued)

Eγ	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	Comments
							$\alpha(\exp)$ from intensity balance. (152.1 γ)(414.5 γ)(θ): A ₂ =-0.04 2, A ₄ =-0.07 4. (152.1 γ)(306.4 γ)(θ): A ₂ =+0.10 3, A ₄ =-0.06 4.
154.3 <i>1</i> 165.4 <i>1</i>	31 <i>3</i> 26 <i>3</i>	319.70 165.40	$(7/2^+)$ $(5/2^+)$	165.40 0.0	(5/2 ⁺) 5/2 ⁺	D	$(154.3\gamma)(410.8\gamma)(\theta): A_2 = -0.07 3, A_4 = -0.01 4.$ Mult.: $\Delta J=0$ transition from $\gamma\gamma(\theta)$.
171.9 <i>3</i> 188.9 <i>3</i>	12 2 15 2	491.71 341.01	$(9/2^+)$ $9/2^+$	319.70 152.10	$(7/2^+)$ $7/2^+$	D D	$(103.4\gamma)(330.4\gamma)(6)$; $A_2 = +0.042$; $A_4 = +0.013$; $(171.9\gamma)(253.7\gamma)(\theta)$; $A_2 = -0.021$; $A_4 = +0.094$. $(188.9\gamma)(152.1\gamma)(\theta)$; $A_2 = +0.063$; $A_4 = +0.044$.
233.6^{\ddagger} <i>1</i> 238.3 <i>5</i>	8 2 32 3 9 3	581.90 730.48	$11/2^{-}$ (11/2 ⁺)	348.30 491.71	$\frac{9/2}{7/2^{-}}$ (9/2 ⁺)	Q	$(233.6\gamma)(405.9\gamma)(\theta)$: A ₂ =+0.09 2, A ₄ =-0.04 2.
239 [@] 240.9 5 253.4 5	5 <i>1</i> 2 <i>1</i>	969.61 581.90 819.81	(13/2 ⁺) 11/2 ⁻ 13/2 ⁺	730.48 341.01 566.59	(11/2 ⁺) 9/2 ⁺ 11/2 ⁺		
253.7 [‡] 1	35 <i>3</i>	319.70	$(7/2^+)$	66.00	$(3/2^+)$	Q	
256.1 [‡] 1	23 <i>3</i>	838.00	$13/2^{-}$	581.90	$11/2^{-}$	D	$(256.1\gamma)(233.6\gamma)(\theta)$: A ₂ =-0.05 2, A ₄ =-0.01 3.
306.4 [‡] 1 326.3 1 341.0 1	39 <i>4</i> 39 <i>3</i> 53 <i>3</i>	458.50 491.71 341.01	9/2 ⁻ (9/2 ⁺) 9/2 ⁺	$152.10 \\ 165.40 \\ 0.0$	7/2 ⁺ (5/2 ⁺) 5/2 ⁺	D Q O	$(306.4\gamma)(379.5\gamma)(\theta): A_2 = -0.06\ 2, A_4 = +0.02\ 3.$ $(326.3\gamma)(477.9\gamma)(\theta): A_2 = +0.06\ 3, A_4 = -0.02\ 4.$ $(341.0\gamma)(478.8\gamma)(\theta): A_2 = +0.07\ 3. A_4 = -0.02\ 5.$
348.3 [‡] 1	100 5	348.30	7/2-	0.0	5/2+	E1	$\alpha(K)=0.00325 5; \ \alpha(L)=0.000366 6; \ \alpha(M)=6.51\times10^{-5} 10; \alpha(N+)=1.040\times10^{-5} 15 \alpha(N)=9.86\times10^{-6} 14; \ \alpha(O)=5.42\times10^{-7} 8 (348.3\gamma)(233.6\gamma)(\theta): \ A_2=-0.10 2, \ A_4=+0.01 3. POL=+0.30 14$
379.5 [‡] 1	29 <i>3</i>	838.00	$13/2^{-}$	458.50	9/2-	0	$(379.5\gamma)(555.0\gamma)(\theta)$: A ₂ =+0.05 2, A ₄ =-0.02 4.
405.2 [‡] 5	52	1393.0	$17/2^{-}$	987.80	$15/2^{-}$,	
405.9 [‡] 1	50 <i>3</i>	987.80	$15/2^{-}$	581.90	$11/2^{-}$	Q	$(405.9\gamma)(557.6\gamma)(\theta)$: A ₂ =+0.10 3, A ₄ =-0.01 4.
410.8 [‡] 1	22 2	730.48	$(11/2^+)$	319.70	$(7/2^+)$	Õ	$(410.8\gamma)(253.7\gamma)(\theta)$: A ₂ =+0.07 3, A ₄ =-0.01 4.
414.5 [‡] 1	55 4	566.59	11/2+	152.10	7/2+	0	
477.9 [‡] 1	25 2	969.61	$(13/2^+)$	491.71	$(9/2^+)$	0	
478.8 1	31 3	819.81	$13/2^{+}$	341.01	9/2+	Q	$(478.8\gamma)(602.8\gamma)(\theta): A_2=+0.04 \ I, A_4=-0.04 \ 5.$
551.2 [‡] 1	29 4	1117.79	$15/2^{+}$	566.59	$11/2^{+}$	Q	$(551.2\gamma)(414.5\gamma)(\theta)$: A ₂ =+0.09 3, A ₄ =+0.01 4.
555.0 [‡] 3	15 <i>3</i>	1393.0	$17/2^{-}$	838.00	$13/2^{-}$	Q	
556.0 [‡] 5	92	1286.5	$(15/2^+)$	730.48	$(11/2^+)$		
557 [@]		2102.2	$21/2^{-}$	1545.29	$19/2^{-}$		
557.5 [‡] 1	32 <i>3</i>	1545.29	19/2-	987.80	$15/2^{-}$	Q	$(557.5\gamma)(698.7\gamma)(\theta)$: A ₂ =+0.07 3, A ₄ =-0.01 4.
602.8 <i>3</i>	18 4	1422.6	$17/2^{+}$	819.81	$13/2^{+}$	Q	
620.7 3	15 2	1590.3	$(17/2^+)$	969.61	$(13/2^+)$	0	(670.0.3)(551.2.3)(0), A = (0.05.2, A = 0.00, 4)
687.8.5	124	190.8	$(19/2^+)$	1286.5	$(15/2^+)$	Q	$(079.0\gamma)(551.2\gamma)(\theta)$: A ₂ =+0.05 5, A ₄ =0.00 4.
698.7 <i>3</i>	17 3	2244.0	(1)/2) 23/2 ⁻	1545.29	$(15/2^{-})$ $19/2^{-}$	0	
709	52	2102.2	$21/2^{-}$	1393.0	17/2-		
720	62	2142.6	$(21/2^+)$	1422.6	$17/2^{+}$		
750.5 5	8 <i>3</i>	2340.8	$(21/2^+)$	1590.3	$(17/2^+)$		
790 [@]	0.2	2586.8	$(23/2^+)$	1796.8	$\frac{19}{2^+}$		
047	フリ	5075.0	(21/2)	∠∠ 44 .0	23/2		

[†] From $\gamma\gamma(\theta)$, mult=Q corresponds to $\Delta J=2$ and mult=D to $\Delta J=1$ transition. In some cases mult is also from conversion coefficients.

²⁴⁸Cm SF decay 2005Ur02,2006Pi14 (continued)

 $\gamma(^{107}Mo)$ (continued)

[‡] Already seen by 1991Ho16.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[@] Placement of transition in the level scheme is uncertain.

¹⁰⁷₄₂Mo₆₅

¹⁰⁷₄₂Mo₆₅