History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	Jean Blachot	NDS 109,1383 (2008)	1-Mar-2008						

 $Q(\beta^{-})=-1416 \ 3; \ S(n)=9536 \ 4; \ S(p)=5788.2 \ 24; \ Q(\alpha)=-2803 \ 4$ 2012Wa38

Note: Current evaluation has used the following Q record -1417 4 9536 4 5788 3 -2804 5 2003Au03.

¹⁰⁷Ag band properties: E(level), $T_{1/2}$, branching ratio, δ , HF values are compared with rotational-model Coriolis calculation and with ¹⁰⁵Ag; see 1979Po13.

¹⁰⁷Ag Levels

Cross Reference (XREF) Flags

	A B C D E F	¹⁰⁷ Pd $β^-$ decay ¹⁰⁷ Ag IT decay ¹⁰⁷ Cd ε decay ⁹⁶ Zr(¹⁴ N,3nγ) ¹⁰⁴ Ru(⁶ Li,3nγ) ¹⁰⁰ Mo(¹¹ B,4nγ)	$(6.5 \times 10^{6} \text{ y})$ (44.3 s) (6.50 h) $(7^{2}\text{Li},4n\gamma)$	G H J K L		M N O P Q	¹⁰⁷ Ag(α, α') Coulomb excitation ¹⁰⁹ Ag(p,t) ¹⁰⁷ Ag(d,d') ¹⁰⁶ Pd(p,p),(p,n) IAR				
E(level) [‡]	$J^{\pi^{\dagger}}$	T _{1/2}	XRE	F		С	omments				
0.0 ^e	1/2-	stable	ABCDEFGH J	K MNO	$\mu = -0.113570 \ 20 \ (1989F)$ $\mu: \text{ other: } -0.11367965 \ \mu$ $(1989Di12).$ $W = 12 \ (107(Free)) \ \text{order}$	Ra17) 15 (19	74Sa25). $\Delta < r^2 >= 0.148 \ 31$				
93.125 <i>19</i>	7/2+	44.3 s 2	BCDEFG	N	J : 1/2 (1976Fd06) optic %IT=100 μ =(+)4.398 5 (1985Ed0) T _{1/2} : from 1947Br05. A (2000Yo07); Others: 4 (1951Wo15),43.8 s 6 J ^{\pi} : E3 transition to 1/2 ⁻ μ ,Q: μ using radiation d mixing resonance on	J ⁿ : 1/2 (1976Fu06) optical, L=0 (p,t), L=1 (³ He,d). %IT=100 μ =(+)4.398 5 (1985Ed01,1989Ra17); Q=0.98 11 (1986Be01) T _{1/2} : from 1947Br05. Agrees with the last result: 44.5 s 8 (2000Y007); Others: 40 s 2 (1940Al01),44 s 1 (1951W015),43.8 s 6 (1963Ve13), 44.2 s 3 (1967Ab07). J ^π : E3 transition to 1/2 ⁻ g.s. μ ,Q: μ using radiation detection of NMR method, Q: level					
125.59 ^{<i>a</i>} 3	(9/2)+	2.85 ns 10	CDEFG	L O	E(level): follows regiona at g.s., ¹⁰³ Ag at 27 ke keV, ¹¹¹ Ag at 130 keV $T_{1/2}$: from 1972Ja01 (79 1969Be75. B(E2)(9/2 ⁺ to 7/2 ⁺)=0.2	al tren eV, 105 V. $96\gamma)(3$ 24 9 ex	d of low-lying $9/2^+$ states: ¹⁰¹ Ag ⁵ Ag at 53 keV, ¹⁰⁹ Ag at 133 ³² γ)(t), scin. Others: 1962La10, xp, 0.185 theory (1974Ku09).				
324.81 ^e 3	3/2-	5.0 ps 9	C EFG J	MNO	$\mu = +0.94$ <i>I</i> 4 (1984Wo08 μ : others: +1.05 <i>I</i> 4 (198 $T_{1/2}$: 5.0 ps 9 (1974Mi0 J ^{π} : L=2 (p,t), L=1 (³ He g.s.) 34Ba7)2) rec ,d), C	2), +0.92 <i>18</i> (1986Ba14). coil-distance Doppler shift. oul. ex., M1+E2(325 γ) to 1/2 ⁻				
423.150 ^e 24	5/2-	29.8 ps 21	CDEFGH J	MNO	μ =+1.03 <i>18</i> (1989Ra17) μ : others: +1.13 <i>15</i> (198 <i>15</i> (1984Wo08). T _{1/2} : 30 ps 2 (1974Mi0) (1989Lo08). J ^π : L=2 (p,t), J=5/2 from	34Ba7 2) reco n γ(θ)	2), +1.03 <i>18</i> (1986Ba14), +0.93 oil-distance Doppler shift, 35 ps 2) in Coul. ex.				
773.31 ^a 6	$(11/2)^+$	<15 ns	DEF	L	$T_{1/2}$: from (1979Sc30) $T_{1/2}$: from (1979Sc30) $T_{1/2}$: introband M1 + E2(64)	$\gamma \gamma(t)$.	$0/2^+$ has a state				
786.59 25	3/2-	0.27 ps 8	C GH	MNO	$T_{1/2}$: 0.27 ps 8 (1970Ro DSA.	o14) D	SA. Other: 0.21 ps 7 (1974Er05)				

Continued on next page (footnotes at end of table)

¹⁰⁷Ag Levels (continued)

E(level) [‡]	J^{π}	T _{1/2}	XREF	Comments
				J^{π} : L=2 (p,t), L=1 (³ He,d), Coul. ex., D+Q(786\gamma) to 1/2 ⁻
922.06 3	5/2+	<0.6 ns	C G	g.s. $T_{1/2}$: from (K x ray)(829 γ)(t) (1969Be75).
	-, -			J^{π} : L=2 (³ He,d), E1(597 γ) to 3/2 ⁻ state, M1(829 γ) to 7/2 ⁺ state.
949.70 7	5/2-	1.36 ps 18	C H J MNO	T _{1/2} : from B(E2)=0.0203 22, Iγ(950γ)-branching=12.6% 10. Others: 1970Ro14, 1974Er05 (DSA). J ^π : L=2 (p,t), M1+E2 γ decays to $3/2^-, 5/2^-$ states,
				E2(950 γ) to 1/2 ⁻ g.s., T _{1/2} from B(E2) and DSA methods agree
973.3 ^e 3	(7/2)-		C EF NO	J^{π} : L=4 (p,t), γ decays to $3/2^{-}$.
991.00 ^{<i>a</i>} 6	$(13/2)^+$	<15 ns	DEF L	$T_{1/2}$: from 1979Sc30 $\gamma\gamma$ (t). J ^{π} : intraband E2(865 γ) crossover, M1+E2(218 γ) cascade.
1061.2 3	7/2+,9/2+@		FG O	
1142 <i>I</i>	1/2+		G m	XREF: m(1140).
11/2 06 8	$(5/2)^{-}$		C	J^{n} : L=0 (³ He,d).
1145.00 8	(3/2)		C mO	AKEF: III(1140). I^{π} : M1+F2 γ to 5/2 ⁻ state D+O γ to 3/2 ⁻ γ to 7/2 ⁺
1146.9 ^e 5	$(9/2)^{-}$		DEF J mN	XREF: m(1140).
	<			J^{π} : L=4 (p,t), E2 γ to 5/2 ⁻ .
1222 5	$(11/2^-, 13/2^-)$		0	J^{π} : L(p,t)=(6).
1223.01 5	$(5/2)^+$		C G	J^{π} : L=2 (³ He,d), M1(301 γ) to 5/2 ⁺ state, E1(898 γ) to 3/2 ⁻ state, γ -decays to 7/2 ⁺ ,9/2 ⁺ states.
1258.89 24	$(3/2)^+$		C GH J	J ^{π} : L=2 (³ He,d), γ -decays to 1/2 ⁻ ,3/2 ⁻ ,7/2 ⁺ states.
1325.8 <i>3</i> 1449.01 <i>21</i>	$(3/2)^+$		C GH D	J ^{π} : L=2 (³ He,d), γ -decays to 1/2 ⁻ ,7/2 ⁺ states.
1464.7 10	(3/2)-	<0.6 ps	G MNO	T _{1/2} : from I γ (1465 γ) branching and B(E2) limits (1970Ro14).
				J^{π} : L=2 (p,t). M1+E2 γ to 3/2 ⁻ , not to 5/2 ⁻ .
1483 5			0	J^{π} : L(p,t)=6,5.
1508 10	7/2+,9/2+		GJ	J^{π} : L=4 (³ He,d).
1572 5	7/2-,9/2-		J 0	
1577.35 20	(15/2)+		DE	Unobserved γ feeding in prompt $\gamma(804\gamma)$ -coin spectra suggests 1577-keV isomer (T _{1/2} =?).
1615 5	1/2-		0	$J^{*:} \gamma \in (0, 15/2)^{*}, (11/2)^{*}, I^{\pi:} I = 0 (n t)$
1653 5	$1/2^{-1}$		mO	J^{π} : L=0 (p,t). J^{π} : L=0 (p,t).
1656 10	$7/2^+, 9/2^+$		Gm	J^{π} : L=4 (³ He,d).
1685.5	7/2-9/2-@		1 0	
1799.69 ^{<i>a</i>} 13	$(15/2)^+$		DEF L	J^{π} : intraband E2(1026 γ) crossover, M1+E2(808 γ) cascade.
1820 10	$1/2^{+}$		G	J^{π} : L=0 (³ He,d).
1832 5	$3/2^{-}, 5/2^{-}$		0	
1846.0 4			D	
1851 5	$1/2^{-}$		0	J^{π} : L=0 (p,t).
1875 5			G M O	J^{π} : L(p,t)=2,3.
1904 5	7/2 - 0/2		0	$J^{*}: L(p,t)=2,3.$
1918 3	<i>1/2</i> ,9/2 [−] ♥		G J ()	
1924.8 ^a 4	13/2		F L	
1942 5	3/2-,5/2-		0	
1956 5 1975.71 23	7/2-,9/2-₩		O D	

¹⁰⁷Ag Levels (continued)

E(level) [‡]	$J^{\pi \dagger}$	XRE	EF	Comments
2026 5	5/2+	G	0	J^{π} : L=2 (³ He,d). L(p,t)=3,4.
2053.54 ^a 11	$(17/2)^+$	DEF	L	J^{π} : intraband E2(1062 γ) crossover, 254 γ cascade.
2062 5	5/2+,7/2+@	G	0	XREF: G(2095).
2065.1° 20	$(13/2^{-})$	F		
2000.7 21 2111 5		r G	0	XREF: G(2105). I^{π} : L(p,t)=4.3.
2140 5	5/2+,7/2+@		0	· · - (r,·) · ···
2171.99 24 2176.4 21	15/2-	F F	L	
2177 5	5/2 ⁺ ,7/2 ⁺ [@]		MO	
2199 5	5/2 ⁺ ,7/2 ⁺ [@]	G	J O	
2227 5	5/2+,7/2+@		0	
2254 5	3/2 ⁻ ,5/2 ^{-@}		0	
2284 5	3/2-,5/2-@		0	
2297.91 [°] 12	(15/2)-	DEF	L	J^{π} : E1(1307 γ) to 13/2 ⁺ state.
2306 5	7/2-,9/2-@		0	
2320 <i>5</i> 2347 <i>5</i>	7/2 ⁻ ,9/2 ⁻ @		0 0	
2355 5	9/2+,11/2+@		0	
2370.5 21		F		
2374 5	3/2-,5/2-@		0	
2405 5	3/2-,5/2-@		0	
2411.88° 13	(1/2)	DEF	L	J [*] : intraband M1+E2(114 γ) to 15/2 base state.
2414 5	1/2, 9/2		0	
2437 5	3/2, $5/2$		0	
2463 5	7/2-,9/2-	_	0	
2463.5 ^{<i>u</i>} 5	(15/2 ⁻)	F		
2494 5	7/2-,9/2-@		0	
2533 5 2542 08 C 14	7/2 ⁻ ,9/2 ⁻	DEE	0	\overline{M}_{1} : the hand M1 + EQ(121.) to $17/2^{-1}$ state
2543.08° 14	(19/2)	DEF	L	J [*] : intraband M1+E2(131 γ) to 1//2 state.
2590.5	(17/2=)	-	0	
2004.5 3	(17/2)	F	0	I^{π} : I (n t)=4.5
2672 5			0	J : E(p,t) = 1, j.
2701 5	$7/2^{-}, 9/2^{-}$		0	
2717 5	1 / 1		0	
2732.9 24	21/2-	F		
2733 5	7/2-,9/2-@		0	
2/33.68 25	(21/2)=	DE	т	\mathbb{I}_{+} introduced M1 (E2/205.) to 10/27 state
2748.09* 15	(21/2)	DEF	L	J^* : Intraband M11+E2(2037) to 19/2 state.
2790.2 10		Ē		
2808 5	7/2 ⁻ ,9/2 ^{-@}		0	
2844 5	7/2-,9/2-@		0	
2883 5			0	
2891.91 ^{<i>a</i>} 18 2904 5	$(19/2)^+$	F	L 0	

¹⁰⁷Ag Levels (continued)

E(level) [‡]	J^{π}	XRE	F	Comments
2923.5 ^d 5	$(19/2^{-})$	F		
3004 ^{<i>d</i>} 1		F		
3028.58 <i>23</i> 3034.4 <i>4</i>	23/2-	D DEF		
3048.3 8 3056.25 ^c 17 3111 5	(23/2)-	DEF	L L 0	J ^{π} : intraband M1+E2(308 γ) to 21/2 ⁻ state.
3125 5 3148.35 ^a 14 3238.5 8	$(21/2)^+$	DEF	0 L L	J^{π} : intraband E2(1095 γ) to 17/2 ⁺ state.
3294.5 ^d 5 3297.84 22 3460.51 ^a 15 3466.57 ^c 25 3520.0 11 3598.1 7	(21/2 ⁻) (21/2 ⁻) (23/2) ⁺ (25/2) ⁻ 25/2 ⁻	F D F DEF DEF EF	L L L	J^{π} : M1+E2(312 γ) to 21/2 ⁺ state. J^{π} : intraband M1+E2(410 γ) to 23/2 ⁻ state.
3675.5 ^d 5 3683.02 ^a 18 3723.7 8 3742.2 11	(23/2 ⁻) (25/2) ⁺ 27/2 ⁻	F D F	L L L	J^{π} : (M1+E2) γ to 23/2 ⁺ state.
$3927.9^{\circ} 4$ 3954.2.7	$(27/2^{-})$	DF	L L	
3977.84 ^{<i>a</i>} 21 4023.5 11 4031.1 10	(27/2 ⁺)	D F E	L L	J^{π} : probable M1+E2 γ to (25/2 ⁺).
4046.4 <i>15</i> 4102.5 ^{<i>d</i>} 5 4356.4 ^{<i>a</i>} 3 4375.1 3 4397.8 ^{<i>c</i>} 4 4752.7 ^{<i>a</i>} 3 4753.0 <i>15</i> 4773.1? <i>11</i>	(25/2 ⁻) (29/2) ⁺ (29/2 ⁺) (29/2 ⁻) (31/2) ⁺	E F D F F E D	L L L	J^{π} : probable M1+E2 γ to 27/2 ⁺ .
4968.2 ^b 4 5006.7 ^c 5	$\frac{29}{2^+}$ $(31/2^-)$	F F	L L	
5246.8 ^{<i>a</i>} 4	$(33/2)^+$	F	L	
5257.6 ^b 4 5565.3 ^c 5	31/2 ⁺ (33/2 ⁻)	F	L L	
5575.4 ^b 4 5748.0 ^a 4	$33/2^+$ $(35/2)^+$	F	L L	
5944.9 ^b 4 6319.3 ^a 4	$(35/2^+)$ $(37/2)^+$		L L	
6376.8 ^b 4	$37/2^{+}$		L	
6887.8 ^b 5 6912.4 ^a 4	39/2 ⁺ (39/2) ⁺		L L	
7442.1 ^b 5	$41/2^{+}$		L	
8046.6 ^b 5	43/2+		L	
8718.1 ^b 6	45/2+		L	
12201 [#] 3 12287 [#] 2	$(5/2^+)^{\&}$ $(1/2^+)^{\&}$			Q Q

¹⁰⁷Ag Levels (continued)

E(level) [‡]	$J^{\pi \dagger}$	XREF
12595# 2	$(3/2^+)^{\&}$	Q
12638 [#] 2	$(1/2^+)^{\&}$	Q
12692 [#] 2	$(3/2^+)^{\&}$	Q
12794 [#] 2	$(5/2^+)^{\&}$	Q

[†] For (HI,xn γ) excitations, assignments are based partly on γ -excitation functions, $\gamma(\theta)$, $\gamma\gamma(\theta)$ ratios, and on the premise that J(initial)=J(final)+ Δ J is more likely than J(initial)=J(final)- Δ J.

[±] Level energy from least-squares adjustment.

IAS.

[@] From L in (p,t).

[&] From J^{π} of parent analog.

^{*a*} Band(A): $\pi g9/2$, Yrast E(levels), δ , branching ratios, HF, T_{1/2} are compared with rotational-model Coriolis calc and with ¹⁰⁵Ag.

^b Band(B): $\Delta J=1$ Band based on 29/2⁺ E(levels), δ , branching ratios, HF, $T_{1/2}$ are compared with rotational-model Coriolis calc and with ¹⁰⁵Ag.

^c Band(C): $\Delta J=1$ band based on (15/2⁻).

^{*d*} Band(D): 3 quasi -particle band (1997Es02). J^{π} from cranked-shell model.

^{*e*} Band(E): $p_{1/2}$ hole Band on gs.

$\gamma(^{107}\mathrm{Ag})$

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [†]	δ	α [@]	Comments
93.125 125.59 324.81	$7/2^+$ (9/2) ⁺ 3/2 ⁻	93.124 20 32.46 2 324.81 3	100 100 100	$\begin{array}{c cccc} 0.0 & 1/2^{-} \\ 93.125 & 7/2^{+} \\ 0.0 & 1/2^{-} \end{array}$	E3 M1+E2 M1+E2	0.074 <i>14</i> -0.207 <i>10</i>	20.4 11.6 2 0.0180 <i>1</i>	B(E3)(W.u.)=0.0310 9 B(M1)(W.u.)=0.018 1; B(E2)(W.u.)=81 29 B(M1)(W.u.)=0.12 2; B(E2)(W.u.)=42 4
423.150	5/2-	98.2 <i>5</i> 330 <i>1</i> 423.150 <i>25</i>	4.6 <i>4</i> 0.22 <i>4</i> 100 <i>4</i>	324.81 3/2 ⁻ 93.125 7/2 ⁺ 0.0 1/2 ⁻	(M1+E2) [#] [E1] E2	-0.059 18	0.449 <i>3</i> 0.0104	B(M1)(W.u.)=0.033 4; B(E2)(W.u.)=11.1 13 B(E1)(W.u.)= $2.7 \times 10^{-7} 4$ B(E2)(W.u.)=43 3
773.31	(11/2)+	647.71 <i>5</i> 680.3 <i>3</i>	100 5 6.6 28	$\begin{array}{cccc} 125.59 & (9/2)^+ \\ 93.125 & 7/2^+ \\ 122.152 & 5/27 \end{array}$	E2			B(M1)(W.u.)>6.4×10 ⁻⁶ ; B(E2)(W.u.)>0.0015 B(E2)(W.u.)>0.0005
786.59	3/2	364 <i>1</i> 461.9 8	12 6 44 9	423.150 5/2 324.81 3/2 ⁻	(M1+E2) [#]	-0.01 8		B(M1)(W.u.)=0.23 8; B(E2)(W.u.)<7.4
922.06	5/2+	786.4 7 597.27 6 796.462 25	100 4.65 25 39.8 12	$\begin{array}{rrr} 0.0 & 1/2^- \\ 324.81 & 3/2^- \\ 125.59 & (9/2)^+ \end{array}$	(M1+E2) [#] E1 (E2)	-0.057 10		B(M1)(W.u.)=0.11 3; B(E2)(W.u.)=0.5 3 B(E1)(W.u.)>7.5×10 ⁻⁸ B(E2)(W.u.)>0.026 Mult.: α (K)exp allows M1 or E2. ΔJ=2 required by adopted $J^{\pi'}$ s.
949.70	5/2-	828.93 <i>3</i> 162 <i>2</i>	100 5 2.2 <i>12</i>	93.125 7/2 ⁺ 786.59 3/2 ⁻	M1			B(M1)(W.u.)>4.4×10 ⁻⁵ E _{γ} : seen only in Coulomb excitation and reported there as possible impurity line
		526.5 <i>1</i> 624.91 <i>10</i> 856.5 <i>4</i>	100 4 78 4 2.0 4 25 0 10	$\begin{array}{cccc} 423.150 & 5/2^{-} \\ 324.81 & 3/2^{-} \\ 93.125 & 7/2^{+} \\ 0.0 & 1/2^{-} \\ \end{array}$	M1+E2 M1+E2 [E1] E2	-0.24 <i>3</i> -0.28 <i>3</i>		B(M1)(W.u.)=0.053 7; B(E2)(W.u.)=9.5 26 B(M1)(W.u.)=0.024 4; B(E2)(W.u.)=4.2 10 B(E1)(W.u.)= $3.6 \times 10^{-6} 9$ B(E2)(W.u.)= $2.2.4$
973.3	(7/2)-	550.1 <i>4</i> 648 5 <i>4</i>	100 8 20 4	$423.150 \ 5/2^{-}$ $324.81 \ 3/2^{-}$	62			$D(E2)(W.U.)=2.54$ $I \cdot I_{2}(648_{2})/I_{2}(550_{2})=0.433 \text{ in Coulomb excitation}$
991.00	$(13/2)^+$	217.7 2	14.8 3	$773.31 (11/2)^+$ $125.59 (9/2)^+$	[F2]			$R(F_2)(W_{11}) > 0.0033$
1143.06	(5/2)-	356.4 <i>4</i> 719.93 <i>10</i>	9.5 <i>14</i>	$786.59 3/2^{-}$	[L2] M1+F2	-112		D(L2)(W.u.)>0.0033
		818.23 <i>10</i> 1050.0 <i>4</i>	57 7 5.5 9	$\begin{array}{c} 423.136 & 3/2 \\ 324.81 & 3/2^{-} \\ 93.125 & 7/2^{+} \end{array}$	$(M1+E2)^{\#}$	+2.0 +2-5		δ : +2.0 +2-5 or +0.26 +14-11 from $\gamma(\theta)$ in ε decay.
1146.9 1223.01	$(9/2)^{-}$ $(5/2)^{+}$	723.7 <i>5</i> 300.9 <i>5</i> 436.6 <i>4</i> 799.92 <i>15</i>	100 27 2 2.7 4 20 2	423.150 5/2 ⁻ 922.06 5/2 ⁺ 786.59 3/2 ⁻ 423.150 5/2 ⁻	E2 M1(+E2)	<0.63	0.022	
1258.89	(3/2)+	898.17 6 1097.5 2 1129.9 <i>I</i> 934.0 4 1165.7 4 1259.0 4	100 4 20 2 74 4 18 4 100 16 12.0 24	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	E1 M1,E2			

6

$\gamma(^{107}\text{Ag})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	δ	α [@]	Comments
1325.8	$(3/2)^+$	1232.6 4	100 21	93.125	7/2+				
1440.01		1325.8 4	17 3	0.0	$1/2^{-}$				
1449.01 1464 7	$(3/2)^{-}$	6/5./2	100	773.31 324.81	$(11/2)^{+}$ $3/2^{-}$	$M1\pm F2$	_0 12 3		$B(M1)(W_{H}) > 0.024 \cdot B(F2)(W_{H}) > 0.13$
1577.35	$(15/2)^+$	586.6.5	43 2	991.00	$(13/2)^+$	M1+E2 M1+E2	-3.0.9		D(W1)(W.u.) > 0.024, D(E2)(W.u.) > 0.13
1077100	(10/2)	804.0 2	100 2	773.31	$(11/2)^+$	E2	010 9		
1799.69	$(15/2)^+$	808.5 2	100 11	991.00	$(13/2)^+$	M1+E2	+0.27 8		
		1026.3 2	22 8	773.31	$(11/2)^+$	E2			
1846.0	10/0-	397.0 <i>3</i>	100	1449.01	(10)				
1924.8	13/2	933.8 4	100	991.00	$(13/2)^{+}$	M1 + E2	0.25.5		
2053 54	$(17/2)^+$	320.77	6.3	1449.01	$(15/2)^+$	MIT+E2	+0.23 3		
2055.54	(17/2)	1062.6 1	100 10	991.00	$(13/2)^+$	E2			
2065.1	$(13/2^{-})$	918.8 3	100 10	1146.9	$(9/2)^{-}$				
2066.7		1075.5 <i>3</i>		991.00	$(13/2)^+$				
		1294.0 <i>3</i>		773.31	$(11/2)^+$				
2171.99	$15/2^{-}$	372.3 2	100	1799.69	$(15/2)^+$				
2176.4		1185.5 3		991.00	$(13/2)^+$				
2207.01	$(15/2)^{-}$	1403.4 3		2176.4	$(11/2)^{+}$				
2297.91	(13/2)	231.0.3		2170.4					
		498.1 3		1799.69	$(15/2)^+$				
		1306.9 1	100	991.00	$(13/2)^+$	E1			δ : -0.01 2 from $\gamma(\theta)$ in (¹⁴ N,3n γ).
									Mult.: γ -rays linear polarization in (⁷ Li,4n γ).
2370.5		444.9 <i>3</i>		1924.8	$13/2^{-}$				
2411.88	$(17/2)^{-}$	113.97 7	100 3	2297.91	$(15/2)^{-}$	M1+E2	+0.05 2	0.294	
0460.5	(15/0-)	612.3 5	15 3	1799.69	$(15/2)^+$				
2463.5	(15/2)	397.53		2065.1	(13/2)				
2543.08	$(19/2)^{-}$	131 20 5	100	1924.0 2411.88	$(17/2)^{-1}$	$(M1 \pm F2)$	$\pm 0.08.2$	0.200	
2545.00	(1)/2)	171.7 3	100	2370.5	(17/2)	(1011+122)	10.00 2	0.200	
2664.5	$(17/2^{-})$	201.4 3		2463.5	$(15/2^{-})$				
		252.3 <i>3</i>		2411.88	$(17/2)^{-}$				
		293.4 <i>3</i>		2370.5					
		366.3 3	100	2297.91	$(15/2)^{-}$				
2732.9	$\frac{21}{2}^{-}$	190.6 3	100	2543.08	$(19/2)^{-}$.0.00.7	0.070.1	
2733.08	$(21/2)^{-}$	190.0 2	100 2	2543.08	(19/2) $(10/2)^{-}$	(M1+E2) (M1+E2)	+0.08 /	0.072 1	
2170.07	(21/2)	336.2.4	94	2411.88	$(17/2)^{-1}$	(1011 ± 122)	TU.U7 2	0.000	
2790.2		990.5	100	1799.69	$(15/2)^+$				
2891.91	$(19/2)^+$	838.0 4	100 16	2053.54	$(17/2)^+$				
		1091.9 2	33 16	1799.69	$(15/2)^+$				

7

 $^{107}_{47}\mathrm{Ag}_{60}$ -7

$\gamma(^{107}\text{Ag})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ	α [@]
2923.5	$(19/2^{-})$	258.6 5	100	2664.5	$(17/2^{-})$			
3004		339.9 5	100	2664.5	$(17/2^{-})$			
3028.58		280.5 5	28 5	2748.09	$(21/2)^{-}$			
		485.5 2	100 <i>3</i>	2543.08	$(19/2)^{-}$			
3034.4	$23/2^{-}$	300.7 2	100	2733.68	-	(M1+E2)	+0.12 7	0.022
3048.3		300.2 7	100	2748.09	$(21/2)^{-}$			
3056.25	$(23/2)^{-}$	308.15 8	100 1	2748.09	$(21/2)^{-}$	(M1+E2)	+0.12 2	0.020
		514 <i>1</i>	52	2543.08	$(19/2)^{-}$			
3148.35	$(21/2)^+$	120 <i>I</i>	62	3028.58				
		1094.9 <i>1</i>	100 <i>3</i>	2053.54	$(17/2)^+$	E2		
3238.5		190.2 <i>1</i>	100	3048.3				
3294.5	$(21/2^{-})$	290.8 <i>3</i>		3004				
		371.8 5	100	2923.5	$(19/2^{-})$			
3297.84	$(21/2^{-})$	1244.3 2	100	2053.54	$(17/2)^+$			
3460.51	$(23/2)^+$	162.8 7	5.6 13	3297.84	$(21/2^{-})$			
		312.21 7	100 7	3148.35	$(21/2)^+$	(M1+E2)	+0.17 4	
		568.2 2	10 <i>3</i>	2891.91	$(19/2)^+$			
3466.57	$(25/2)^{-}$	410.3 2	100 3	3056.25	$(23/2)^{-}$	(M1+E2)	+0.13 3	
		718.5 5	21 6	2748.09	$(21/2)^{-}$			
3520.0	$25/2^{-}$	485.6	100	3034.4	$23/2^{-1}$			
3675.5	$(23/2^{-})$	380.3 5	100	3294.5	$(21/2^{-})$			
3683.02	$(25/2)^+$	222.5 1	100	3460.51	$(23/2)^+$	(M1+E2)	+0.12 4	0.048
		535.0 5	9 <i>3</i>	3148.35	$(21/2)^+$			
3723.7	$27/2^{-}$	485.2 2	100	3238.5				
3927.9	$(27/2^{-})$	461.3 4	100 12	3466.57	$(25/2)^{-}$			
		871.8 6	42 4	3056.25	$(23/2)^{-}$			
3977.84	$(27/2^+)$	294.8 1	100	3683.02	$(25/2)^+$	(M1+E2)	+0.06 4	
		517.0 <i>3</i>		3460.51	$(23/2)^+$			
4023.5		556.9 <i>3</i>	100	3466.57	$(25/2)^{-}$			
4031.1		288.9 5	100	3742.2				
4046.4		526.4 <i>3</i>	100	3520.0	$25/2^{-}$			
4102.5	$(25/2^{-})$	427.2 5	100	3675.5	$(23/2^{-})$			
4356.4	$(29/2)^+$	378.7 <i>3</i>	100 6	3977.84	$(27/2^+)$			
		673.8 <i>5</i>	27 7	3683.02	$(25/2)^+$			
4375.1	$(29/2^+)$	397.3 2	100	3977.84	$(27/2^+)$	(M1+E2)	+0.08 9	
4397.8	$(29/2^{-})$	470.0 <i>3</i>	100 10	3927.9	$(27/2^{-})$			
		931.1 6	56 11	3466.57	$(25/2)^{-}$			
4752.7	$(31/2)^+$	396.4 2	100 6	4356.4	$(29/2)^+$			
		774.6 3	19 5	3977.84	$(27/2^+)$			
4753.0		729.5	100	4023.5				
4773.1?		398 <i>1</i>	100	4375.1	$(29/2^+)$			
4968.2	$29/2^{+}$	937.1 9	73 27	4031.1				

 ∞

$\gamma(^{107}\text{Ag})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_{f}^{π}	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}
4968.2	29/2+	990.4 <i>3</i>	100 9	3977.84	$(27/2^+)$	5944.9	35/2+	687.6 <i>3</i>	25 8	5257.6	31/2+
		1014.0 5	29 13	3954.2		6319.3	$(37/2)^+$	571.3 2	100 11	5748.0	$(35/2)^+$
		1370.1 5	40 7	3598.1				1072.7 4	60 17	5246.8	$(33/2)^+$
5006.7	$(31/2^{-})$	608.8 <i>3</i>	100 16	4397.8	$(29/2^{-})$	6376.8	37/2+	431.8 <i>1</i>	100 8	5944.9	$35/2^{+}$
		1078.8 4	567	3927.9	$(27/2^{-})$			802.7 6	25 9	5575.4	$33/2^{+}$
5246.8	$(33/2)^+$	494.1 2	100 6	4752.7	$(31/2)^+$	6887.8	39/2+	511.1 2	100 18	6376.8	$37/2^{+}$
		890.4 <i>3</i>	29 6	4356.4	$(29/2)^+$			942.9 <i>3</i>	22 10	5944.9	$35/2^+$
5257.6	$31/2^{+}$	289.4 <i>1</i>	100	4968.2	$29/2^{+}$	6912.4	$(39/2)^+$	593.1 2	100 18	6319.3	$(37/2)^+$
5565.3	$(33/2^{-})$	558.5 2	100 12	5006.7	$(31/2^{-})$			1164.4 <i>4</i>	58 16	5748.0	$(35/2)^+$
		1168.0 7	76 17	4397.8	$(29/2^{-})$	7442.1	$41/2^{+}$	554.2 2	100 13	6887.8	$39/2^{+}$
5575.4	$33/2^{+}$	317.8 <i>1</i>	100 6	5257.6	$31/2^{+}$			1065.2 <i>3</i>	100 21	6376.8	$37/2^{+}$
		606.0 5	42 13	4968.2	$29/2^{+}$	8046.6	$43/2^{+}$	604.4 2	100 21	7442.1	$41/2^{+}$
5748.0	$(35/2)^+$	501.0 2	100 10	5246.8	$(33/2)^+$			1159.2 4	27 14	6887.8	39/2+
		995.3 2	46 11	4752.7	$(31/2)^+$	8718.1	$45/2^{+}$	671.3 <i>3</i>	100 21	8046.6	$43/2^{+}$
5944.9	$35/2^+$	369.5 1	100 8	5575.4	$33/2^{+}$			1276.5 5	51 20	7442.1	$41/2^{+}$

[†] From ¹⁰⁷Cd ε decay, Coul. ex., ¹⁰⁴Ru(⁶Li,3n γ), (⁷Li,4n γ), ⁹⁷Zr(¹⁴N,3n γ) and (HI,xn γ). [‡] Relative photon branching from each level. Data are averages from ¹⁰⁷Cd ε decay, Coul. ex., ¹⁰⁴Ru(⁶Li,3n γ), (⁷Li,4n γ) and ⁹⁶Zr(¹⁴N,3n γ). [#] $\gamma(\theta)$ gives D+Q. $\Delta' \pi$ =no required by Adopted Levels. [@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

Level Scheme

Intensities: Relative photon branching from each level

 $^{107}_{47}\mathrm{Ag}_{60}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

¹⁰⁷₄₇Ag₆₀

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{107}_{47}\mathrm{Ag}_{60}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{107}_{47}\mathrm{Ag}_{60}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{107}_{47}\mathrm{Ag}_{60}$

 $^{107}_{47}\mathrm{Ag}_{60}$