$^{106}{ m Y}\,{\it \beta}^-$ decay (79 ms) 2011Su11,2011Ni01 Type Author Citation Literature Cutoff Date Full Evaluation Balraj Singh ENSDF 10-Jun-2015 Parent: 106 Y: E=0; $T_{1/2}$ =79 ms +10-5; $Q(\beta^-)$ =12860 SY; $\%\beta^-$ decay=100.0 ¹⁰⁶Y-E: It is assumed that the observed activity corresponds to the g.s. of ¹⁰⁶Y. $^{106}\text{Y-J}^{\pi}$: 2+,3+ proposed in 2011Su11 based on comparison with J^{π} of ^{108}Nb g.s. 106 Y-T_{1/2}: From 106 Y Adopted Levels. 106 Y-Q(β^-): 12860 540 (syst,2012Wa38). ¹⁰⁶Y-% β ⁻ decay: β ⁻ decay mode is expected to be 100%, with the possibility of delayed neutron decay (theoretical % β ⁻n=0.7 (1997Mo25)). 1997Be70: ¹⁰⁶Y first produced in Pb(²³⁸U,F), E=750 MeV/nucleon. Identification by time-of-flight, FRS at GSI facility. No other properties of this decay were determined in this work. 2011Ni01: 106 Y nuclide produced in Be(238 U,F) reactions at E=345 MeV/nucleon produced by the cascade operation of the RIBF complex of accelerators at RIKEN. Target=550 mg/cm². Identification of 106 Y made on the basis of magnetic rigidity, time-of-flight and energy loss. The separated nuclei were implanted in a nine-layer double-sided silicon-strip detector (DSSSD). Correlations were recorded between the heavy ions and β rays. The half-life of 106 Y isotope was measured from the correlated ion- β decay curves and maximum likelihood analysis technique. In the analysis of the decay curve, β -detection efficiency, background rate, daughter and granddaughter (including those populated in delayed neutron decays) half-lives, and β -delayed neutron emission probabilities were considered. Comparison of measured half-lives with FRDM+QRPA and KTUY+GT2 calculations. 2011Su11 (also 2013Su08): same experimental arrangement as in 2011Ni01. β -decay events selected using position and time correlations between implantation and β -ray events. Measured E γ , I γ , $\gamma\gamma$, $\beta\gamma$ coin. 2015Lo04: ¹⁰⁶Y nuclide produced at RIBF-RIKEN facility in ⁹Be(²³⁸U,F) reaction at E=345 MeV/nucleon with an average intensity of 6×10¹⁰ ions/s. Measured half-life of ¹⁰⁶Y. ## ¹⁰⁶Zr Levels | E(level) [†] | $J^{\pi \ddagger}$ | T _{1/2} | Comments | |-----------------------|--------------------|------------------|--| | 0.0 | 0+ | 191 ms <i>19</i> | $T_{1/2}$: from Adopted Levels. | | 152.1 5 | (2^{+}) | | , | | 476.5 <i>7</i> | (4^{+}) | | | | 607.0 5 | (2^{+}) | | Transition from this level to the first 2^+ state is expected, but no γ -ray peak was observed at | | | | | 455 keV due to low statistics (2011Su11). | [†] From E γ data, assuming Δ E γ =0.5 keV. γ (106Zr) [‡] From systematics of yrast levels in even-even Zr nuclei (2011Su11). [†] Assignment of γ rays based on $\beta \gamma$ and $\gamma \gamma$ coin data (2011Su11). ## ¹⁰⁶Y β^- decay (79 ms) 2011Su11,2011Ni01 ## Decay Scheme