$^{106}{ m Y}\,{\it \beta}^-$ decay (79 ms) 2011Su11,2011Ni01

Type Author Citation Literature Cutoff Date
Full Evaluation Balraj Singh ENSDF 10-Jun-2015

Parent: 106 Y: E=0; $T_{1/2}$ =79 ms +10-5; $Q(\beta^-)$ =12860 SY; $\%\beta^-$ decay=100.0

¹⁰⁶Y-E: It is assumed that the observed activity corresponds to the g.s. of ¹⁰⁶Y.

 $^{106}\text{Y-J}^{\pi}$: 2+,3+ proposed in 2011Su11 based on comparison with J^{π} of ^{108}Nb g.s.

 106 Y-T_{1/2}: From 106 Y Adopted Levels.

 106 Y-Q(β^-): 12860 540 (syst,2012Wa38).

¹⁰⁶Y-% β ⁻ decay: β ⁻ decay mode is expected to be 100%, with the possibility of delayed neutron decay (theoretical % β ⁻n=0.7 (1997Mo25)).

1997Be70: ¹⁰⁶Y first produced in Pb(²³⁸U,F), E=750 MeV/nucleon. Identification by time-of-flight, FRS at GSI facility. No other properties of this decay were determined in this work.

2011Ni01: 106 Y nuclide produced in Be(238 U,F) reactions at E=345 MeV/nucleon produced by the cascade operation of the RIBF complex of accelerators at RIKEN. Target=550 mg/cm². Identification of 106 Y made on the basis of magnetic rigidity, time-of-flight and energy loss. The separated nuclei were implanted in a nine-layer double-sided silicon-strip detector (DSSSD). Correlations were recorded between the heavy ions and β rays. The half-life of 106 Y isotope was measured from the correlated ion- β decay curves and maximum likelihood analysis technique. In the analysis of the decay curve, β -detection efficiency, background rate, daughter and granddaughter (including those populated in delayed neutron decays) half-lives, and β -delayed neutron emission probabilities were considered. Comparison of measured half-lives with FRDM+QRPA and KTUY+GT2 calculations.

2011Su11 (also 2013Su08): same experimental arrangement as in 2011Ni01. β -decay events selected using position and time correlations between implantation and β -ray events. Measured E γ , I γ , $\gamma\gamma$, $\beta\gamma$ coin.

2015Lo04: ¹⁰⁶Y nuclide produced at RIBF-RIKEN facility in ⁹Be(²³⁸U,F) reaction at E=345 MeV/nucleon with an average intensity of 6×10¹⁰ ions/s. Measured half-life of ¹⁰⁶Y.

¹⁰⁶Zr Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	0+	191 ms <i>19</i>	$T_{1/2}$: from Adopted Levels.
152.1 5	(2^{+})		,
476.5 <i>7</i>	(4^{+})		
607.0 5	(2^{+})		Transition from this level to the first 2^+ state is expected, but no γ -ray peak was observed at
			455 keV due to low statistics (2011Su11).

[†] From E γ data, assuming Δ E γ =0.5 keV.

 γ (106Zr)

[‡] From systematics of yrast levels in even-even Zr nuclei (2011Su11).

[†] Assignment of γ rays based on $\beta \gamma$ and $\gamma \gamma$ coin data (2011Su11).

¹⁰⁶Y β^- decay (79 ms) 2011Su11,2011Ni01

Decay Scheme

