Adopted Levels, Gammas

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	Balraj Singh	ENSDF	10-Jun-2015						

 $Q(\beta^{-})=7290 SY; S(n)=5510 SY; S(p)=15370 SY; Q(\alpha)=-8970 SY$ 2012Wa38

Estimated uncertainties (2012Wa38): 200 for Q(β^-) and S(n), 540 for S(p), 210 for Q(α).

 $Q(\beta^{-}n)=2930\ 200,\ S(2n)=9320\ 200,\ S(2p)=29380\ 360\ (syst, 2012Wa38).$

1994Be24, 1998Do08: ¹⁰⁶Zr produced and identified in Pb(²³⁸U,F), reaction at E=750 MeV/nucleon. Identification by time-of-flight, FRS at GSI facility.

1997So07: ²⁰⁸Pb(²³⁸U,F),E=20 MeV/nucleon at NSCL facility using the A1200 fragment separator, four events assigned to ¹⁰⁶Zr.

- 2009Pe06: ¹⁰⁶Zr formed by fragmentation of ¹³⁶Xe beam at 120 MeV/nucleon at NSCL facility using Coupled Cyclotrons and A1900 fragment separator. The time-of-flight and transversal positions of each particle was measured using two plastic scintillators. The ΔE energy loss in a Si PIN detector was measured which, when combined with time-of-flight (tof) and transversal position measurements, allowed for an event-by-event identification of the transmitted nuclei. Transmitted nuclei and their β decays were measured using the β counting system consisting of four Si PIN detectors and a double-sided Si strip detector. β -delayed neutrons were measured in coincidence with β -decay precursor using neutron emission ratio observer (NERO) detector consisting of 60 proportional gas counter tubes embedded in polyethylene moderator matrix. The γ rays were measured with SeGA Ge detectors. Measured isotopic half-lives and delayed neutron emission probabilities Isotopic half-life was measured by 2009Pe06 from least-squares fit and maximum likelihood method of time differences of implantations and correlated β decay events.
- 2011Ni01: ¹⁰⁶Zr nuclide produced in Be(²³⁸U,F) reactions at E=345 MeV/nucleon produced by the cascade operation of the RBIF complex of accelerators at RIKEN. Target=550 mg/cm². Identification of ¹⁰⁶Zr made on the basis of magnetic rigidity, time-of-flight and energy loss. The separated nuclei were implanted in a nine-layer double-sided silicon-strip detector (DSSSD). Correlations were recorded between the heavy ions and β rays. The half-life of ¹⁰⁶Zr isotope was measured from the correlated ion- β decay curves and maximum likelihood analysis technique. In the analysis of the decay curve, β -detection efficiency, background rate, daughter and granddaughter (including those populated in delayed neutron decays) half-lives, and β -delayed neutron emission probabilities were considered. Comparison of measured half-lives with FRDM+QRPA and KTUY+GT2 calculations.
- 2015Lo04: ¹⁰⁶Zr nuclide produced at RIBF-RIKEN facility in ⁹Be(²³⁸U,F) reaction at E=345 MeV/nucleon with an average intensity of 6×10^{10} ions/s. Identification of ¹⁰⁶Zr was made by determining atomic Z and mass-to-charge ratio A/Q, where Q=charge state of the ions. The selectivity of ions was based on magnetic rigidity, time-of-flight and energy loss. The separated nuclei were implanted at a rate of 50 ions/s in a stack of eight double-sided silicon-strip detector (WAS3ABi), surrounded by EURICA array of 84 HPGe detectors. Correlations were recorded between the implanted ions and β rays. The half-life of ¹⁰⁶Zr isotope was measured from the correlated ion- β decay curves and maximum likelihood analysis technique as described in 2014Xu07. Comparison of measured half-lives with FRDM+QRPA, KTUY+GT2 and DF3+CQRPA theoretical calculations.

2011Su11: ¹⁰⁶Zr states populated by β -decay of ¹⁰⁶Y. See ¹⁰⁶Y β^- decay (79 ms) dataset for details. 2006Jo14: mass measurement.

Theoretical structure calculations:

2012Sh05: levels, J, π , configurations, shapes, and deformation parameters. 2011Li13: levels, J, π , rotational bands, yrast band, quasiparticle bands, inertia moment, B(E2). 2011Pe35: levels, J, π , deformation, shape coexistence, rotational band, band mixing. 2010Bo12: level energies, B(E2) values, and potential energy surface, IBA-1 model. 2009La08: level energies, and B(E2) values. IBA-1 model. 2002Xu02: levels, isomers, deformation parameters. Additional information 1. 1985Ca33: levels, B(E2) ratios.

Adopted Levels, Gammas (continued)

¹⁰⁶Zr Levels

Cross Reference (XREF) Flags

- 106 Y β^{-} decay (79 ms) 9 Be(238 U,F γ) A В

E(level) [†]	J ^{π‡}	T _{1/2}	XREF	Comments		
0.0#	0+	180 ms 9	AB	$%β^{-}=100; %β^{-}n≤7 (2009Pe06)$ Theoretical %β ⁻ n=0.6 (2003Mo09). T _{1/2} : weighted average of 175 ms 7 (2015Lo04), 186 ms 11 (2011Ni01), and 260 ms 40 (2009Pe06). Method: ion-β correlations.		
152.1 [#] 5	(2^{+})		AB			
476.5 [#] 7	(4^{+})		AB			
607.0 5	(2 ⁺)		A	Transition from this level to the first 2 ⁺ state is expected, but no γ -ray peak was observed at 455 keV due to low statistics (2011Su11).		
946.5 [#] 12	(6 ⁺)		В			
1571.5 [#] 23	(8 ⁺)		В			

[†] From E γ data, assuming Δ E γ =0.5 keV when not stated.

[‡] From systematics of yrast levels in even-even Zr nuclei (2011Su11) and ground-state band members (2014An01).

[#] Band(A): The g.s. band.

$\gamma(^{106}{\rm Zr})$

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.
152.1	(2^{+})	152.1	$0.0 \ 0^+$	[E2]
476.5	(4^{+})	324.4	152.1 (2 ⁺)	
607.0	(2^{+})	607.0	$0.0 \ 0^{+}$	
946.5	(6^{+})	470 <i>1</i>	476.5 (4+)	
1571.5	(8+)	625 2	946.5 (6+)	

[†] From β^- decay, if a level is populated in both the datasets.

Adopted Levels, Gammas

Level Scheme

Adopted Levels, Gammas

 $^{106}_{40}{
m Zr}_{66}$