$^{110}{ m Te}~lpha~{ m decay}$

History

Type Author Citation Literature Cutoff Date
Full Evaluation D. De Frenne and A. Negret NDS 109, 943 (2008)

1-May-2007

Parent: 110 Te: E=0.0; J^{π} =0+; $T_{1/2}$ =18.6 s 8; $Q(\alpha)$ =2723 16; $%\alpha$ decay6.7×10⁻⁴ CA $T_{1/2}(^{110}$ Te)=18.6 s 8, measured by 1977Ki11 and adopted in 1992De49, is used here. The α branching is estimated as $6.7 \times 10^{-4} \%$ 35 from $r_0(^{106}$ Sn)=1.57 5. 1981Sc17 estimated the α branching as $7.6 \times 10^{-4} \%$ from the Rasmussen formalism.

 $Q(\alpha)(^{110}\text{Te})=2723$ 16 is the recommended value in 2003Au03.

¹⁰⁶Sn Levels

 $\frac{\text{E(level)}}{0.0} \quad \frac{\text{J}^{\pi}}{0^{+}}$

 α radiations

 $\frac{\text{E}\alpha}{2624 \ 15} \quad \frac{\text{E(level)}}{0.0} \quad \frac{\text{I}\alpha^{\dagger \#}}{100} \quad \frac{\text{HF}^{\ddagger}}{1.0}$

Comments

I α : only one α group was observed. An upper limit for a 1462-keV α transition to the 2⁺ state at 1206 keV (level was observed in (HI,xn γ), not in α decay) is estimated to be I α (unobserved 1462 α)/I α (2624 α)<2×10⁻¹⁷, by requiring HF(1462 α)>1.

 $E\alpha$: measured by 1981Sc17.

[†] α intensity per 100 α decays.

 $^{^{\}ddagger}$ r₀(106 Sn) is estimated as 1.57 5 by extrapolation from r₀(102 Sn)=1.70 4 and r₀(104 Sn)=1.632 14.

[#] For absolute intensity per 100 decays, multiply by calc 6.7×10^{-6} .