¹⁰⁶**Tc** β^{-} **decay** (**35.6 s**) 1980Su01,1984St04

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	D. De Frenne and A. Negret	NDS 109, 943 (2008)	1-May-2007				

Parent: ¹⁰⁶Tc: E=0.0; J^{π} =(1,2); $T_{1/2}$ =35.6 s 6; $Q(\beta^{-})$ =6547 11; % β^{-} decay=100.0 1980Su01: activity from ²³⁹Pu(n,F) E=th; on-line fast technetium chem. Measured: E γ , I γ , $\gamma\gamma$. Deduced: ¹⁰⁶Ru levels, J^{π} , log ft. Ge(Li) detectors.

1984St04: activity from ²³⁹Pu(n,F) E=th; on-line fast technetium chem. Ge(Li) detectors.Measured: $\gamma\gamma$, $\gamma\gamma(\theta)$. Deduced: Q/D mixing ratios, J^{π} .

Others: 1965FeZZ, 1969ZiZZ, 1969WiZX, 1970HeZH, 1971KaZI, 1972Ho08, 1972Tr08, 1973Ka22, 1976KaYO.

¹⁰⁶Ru Levels

For calculated level energies (<1.5 MeV) based on collective model of Gneuss and Greiner see 1980Su01.

E(level)	J^{π}	T _{1/2}	E(level)	$J^{\pi \dagger}$	E(level)	$J^{\pi \dagger}$
0.0^{\ddagger}	0^+	371.8 d <i>18</i>	1688.41 <i>21</i>		3047.13 15	(1)
270.07 [‡] 4	2+		1774.37 8	(2+)	3059.53 10	(1)
714.69 [‡] <i>10</i>	(4^{+})		1885.61 9	(2 ⁺)	3186.43 15	(1)
792.31 [#] 4	2^{+}		2239.40 7	(1)	3259.43 15	(1)
990.62 [@] 5	0^+		2632.82 9	(0^{+})	3364.13 9	(1)
1091.55 [#] 7	(3 ⁺)		2701.43 8	(1)	3550.98 16	(1)
1392.21 [@] 7	2^{+}		2945.94 15	(1,2)	3930.4 <i>3</i>	(1,2)

[†] From Adopted Levels.

[‡] Band(A): ground-state band up to 4⁺.

[#] Band(B): possible γ -vibrational band.

[@] Band(C): possible β -vibrational band.

β^{-} radiations

log ft and normalization calculated with the assumption of no β feeding of the g.s.

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments
(2617 11)	3930.4	0.72 8	6.70 5	av E β =1077.3 52
(2996 11)	3550.98	2.67 17	6.38 <i>3</i>	av E β =1255.4 52
(3183 11)	3364.13	3.46 22	6.38 <i>3</i>	av E β =1343.5 52
(3288 11)	3259.43	3.3 <i>3</i>	6.46 5	av $E\beta = 1393.052$
(3361 11)	3186.43	8.3 6	6.10 4	av $E\beta = 1427.652$
(3487 11)	3059.53	10.4 8	6.07 4	av E β =1487.7 53
(3500 11)	3047.13	5.2 4	6.38 4	av $E\beta = 1493.6\ 53$
(3601 11)	2945.94	3.7 <i>3</i>	6.58 4	av E β =1541.6 53
(3846 11)	2701.43	8.6 7	6.34 4	av E β =1657.8 53
(3914 11)	2632.82	1.25 12	7.21 5	av $E\beta = 1690.5 53$
(4308 11)	2239.40	23.4 17	6.12 4	av E β =1878.0 53
(4661 11)	1885.61	0.84 22	7.71 12	av $E\beta = 2047.053$
(4773 11)	1774.37	1.28 17	7.57 6	av E β =2100.1 53
(4859 11)	1688.41	0.61 11	7.93 8	av E β =2141.2 53
(5155 11)	1392.21	2.18 22	7.49 5	av E β =2282.9 53
(5455 11)	1091.55	0.89 17	7.99 9	av E β =2426.8 53

Continued on next page (footnotes at end of table)

¹⁰⁶Tc β^- decay (35.6 s) 1980Su01,1984St04 (continued)

β^- radiations (continued)

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft		Comments	
(5556 11) (5755 11) (5832 11) (6277 11)	990.62 792.31 714.69 270.07	2.4 5 7.2 8 0.17 22 13.4 <i>17</i>	7.59 <i>10</i> 7.19 <i>5</i> 8.8 <i>6</i> 7.09 <i>6</i>	av $E\beta$ =2475.1 53 av $E\beta$ =2570.1 53 av $E\beta$ =2607.2 53 av $E\beta$ =2820.1 53		

[†] Absolute intensity per 100 decays.

 $\gamma(^{106}\text{Ru})$

For A₂ and A₄ coef from $\gamma\gamma(\theta)$ see 1984St04.

E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	δ^{\ddagger}	$\alpha^{@}$	Comments
270.096 9	100	270.07	2+	0.0 0+	[E2]		0.008 21	 α(K)=0.033; α(L)=0.005 Mult.: Δπ=no from decay scheme. E_γ: from 1979Bo26. Others: 270.3 2 (1970HeZH), 269.8 4 (1969WiZX).
299.2 <i>1</i> 353.7 2 376.9 2 401.5 2	0.3 <i>1</i> 0.7 <i>2</i> 0.2 <i>1</i> 0.2 <i>1</i>	1091.55 2239.40 1091.55 1392.21	(3^+) (1) (3^+) 2^+	$\begin{array}{rrrr} 792.31 & 2^+ \\ 1885.61 & (2^+) \\ 714.69 & (4^+) \\ 990.62 & 0^+ \end{array}$				
444.6 2 522.22 5	1.2 <i>3</i> 13.4 <i>9</i>	714.69 792.31	(4 ⁺) 2 ⁺	270.07 2 ⁺ 270.07 2 ⁺	Q M1+E2	7.1 +16-11	0.0076 0.0045	Mult.: mult=Q from $\gamma\gamma(\theta)$. E _{γ} : others: 522.4 2 (1970HeZH), 522.6 4 (1969WiZX) (K x ray)(γ). Mult.: $\Delta\pi$ =no from decay scheme.
677.5 1	0.7 1	1392.21	2+	714.69 (4 ⁺)				
682.8 1	0.7 1	1774.37	(2^{+})	$1091.55 (3^+)$				
720.55 5	6.9 7	990.62	0+	270.07 2+	Q		0.0024	Mult.: mult=Q from $\gamma\gamma(\theta)$.
792.31 5	9.3 7	792.31	2+	0.0 0+			0.0016	
821.5 1	1.8 2	1091.55	(3+)	270.07 2+	D+Q	-3.8 +9-16		$ δ: δ = -0.5 also consistent with \gamma\gamma(\theta). $
896.1 2	1.1 2	1688.41		792.31 2+				
1122.2 1	3.0 3	1392.21	2+	270.07 2+	M1+E2	0.24 +13-12		Mult.: $\Delta \pi$ =no from decay scheme.
1240.5 2	0.15 3	2632.82	(0^{+})	1392.21 2+				
1248.8 <i>1</i>	1.0 2	2239.40	(1)	990.62 0 ⁺				
1392.2 <i>1</i>	0.7 1	1392.21	2+	$0.0 0^+$				
1478.5 <i>1</i>	0.8 1	3364.13	(1)	$1885.61 (2^+)$				
1504.3 <i>1</i>	2.1 2	1774.37	(2^{+})	270.07 2+				
1589.7 2	0.5 2	3364.13	(1)	$1774.37(2^+)$				
1615.5 <i>1</i>	3.0 3	1885.61	(2^{+})	$270.07 \ 2^+$				
^x 1643.1 2	1.3 2							
1667.5 2	0.5 2	3059.53	(1)	1392.21 2+				
1710.8 1	1.0 1	2701.43	(1)	990.62 0 ⁺				
1840.5 1	1.7 2	2632.82	(0^{+})	792.31 2*	D.O	0.00.7		
1969.4 1	15.9 17	2239.40	(1)	$270.07 2^{+}$	D+Q	0.297		
2068.9.2	0.4 I	3059.53	(1)	990.62 0 ⁺				
2153.6 2	0.6 1	2945.94	(1,2)	/92.31 2*				

Continued on next page (footnotes at end of table)

106 Tc β^{-} decay (35.6 s) 1980Su01,1984St04 (continued)

$I_{\gamma}^{\#}$ E_{γ}^{\dagger} δ^{\ddagger} E_i(level) \mathbf{J}_i^{π} \mathbf{E}_{f} \mathbf{J}_{f}^{π} Mult. 2239.3 1 24.4 21 2239.40 (1) 0.0 0^{+} 2.5 5 2267.2 2 3059.53 792.31 2+ (1)0.4 1 2362.8 2 2632.82 (0^{+}) 270.07 2+ 270.07 2+ -0.003 91 2431.3 2 4.5 5 2701.43 (1)D+Q 2571.9 2 2.0 2 3364.13 (1)792.31 2+ 2701.4 l10.0 10 2701.43 0.0 0^{+} (1)2758.5 2 1.7 2 3550.98 (1)792.31 2^{+} 2^{+} 2777.0 2 4.3 3 3047.13 (1)270.07 D+O 0.15 5 2^{+} 2789.3 2 14.1 11 3059.53 (1)270.07 D+Q -0.5 6 5.8 5 270.07 2+ 0.03 8 2916.3 2 3186.43 D+Q (1)2945.9 2 6.1 5 2945.94 (1,2) 0.0 0^{+} 2989.2 2 3259.43 270.07 2+ D+Q 0.14 14 1.1 1 (1)x3031.5 2 0.9 1 3047.1 2 0.0 5.0 5 3047.13 (1) 0^{+} 3059.4 2 $1.1 \ l$ 3059.53 0.0 0^{+} (1)3093.9 2 1.1 1 3364.13 (1)270.07 2^{+} D+Q 0.20 +15-14 3186.4 2 9.09 3186.43 (1)0.0 0^{+} 3259.5 2 4.9 5 0^{+} 3259.43 (1)0.0 3281.1 3 0.9 1 3550.98 270.07 2^{+} D+Q 0.25 +13-12 (1)3364.2 3 1.8 23364.13 0.0 0^{+} (1)3551.0 4 2.2 2 3550.98 0.0 0^{+} (1)3660.4 4 0.7 1 3930.4 (1,2)270.07 2+ 3930.2 4 0^{+} 0.6 1 3930.4 (1,2)0.0

[†] From 1980Su01.

[‡] Calculated from $\gamma\gamma(\theta)$ data (1984St04). For all the measured $\gamma\gamma(\theta)$ correlations the second transition was always chosen to be the 270 γ (2⁺ to 0⁺) transition.

[#] For absolute intensity per 100 decays, multiply by 0.558 17.

[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $x \gamma$ ray not placed in level scheme.

$\gamma(^{106}\text{Ru})$ (continued)

From ENSDF

 $^{106}_{44}\mathrm{Ru}_{62}\text{--}4$

 $^{106}_{44}\mathrm{Ru}_{62}\text{-}4$

 $^{106}_{44}{
m Ru}_{62}$