	History										
		Туре		Author Citation Literature Cutoff Date							
		Full Evaluation	D. De	e Frenne and A. Negret NDS 109,943 (2008) 1-May-2007							
$Q(\beta^-)=39.40$ 22 Note: Current e	?; S(n)= valuatio	=8461 6 ; S(p)=1 on has used the t	.132×10 ⁴ following	4; $Q(\alpha) = -5177 \ 10 \ 2012Wa38$ Q record 39.40 218466 7 11320 60-5190 22 2003Au03.							
				¹⁰⁶ Ru Levels							
				Cross Reference (XREF) Flags							
			A B C	$ \begin{array}{rcl} {}^{106}{\rm Tc} \ \beta^{-} \ {\rm decay} \ (35.6 \ {\rm s}) & {\rm D} & {}^{104}{\rm Ru}({}^{18}{\rm O},{}^{16}{\rm O}\gamma) \\ {}^{104}{\rm Ru}({\rm t,p}) & {\rm E} & ({\rm HI,xn}\gamma) \\ {}^{104}{\rm Ru}({\rm t,p}\gamma) & {\rm F} & {}^{252}{\rm Cf} \ {\rm SF} \ {\rm decay} \end{array} $							
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments							
0.0#	0^{+}	371.8 d 18	ABCDEF	%β ⁻ =100							
	Ū			$T_{1/2}$: From the evaluation of 2004Wo02. Others: 373.59 d (1980Ho17) 15, 371.63 d 17 (1977DeYO), 371.7 d 15 (1983Wa26), 366.5 d 8 (1956Sc87), 372 d 4 (1957Me47), 365.8 d 17 (1960Ea02), 371 d 1 (1961Wy01), 368.0 d 18 (1965Fl02).							
270.07# 4	2+	0.20 ns <i>3</i>	ABCDEF	 g=+0.3 <i>I</i> J^π: L=2 (t,p). T_{1/2}: From time-integral perturbed angular correlations with Gammasphere in connection with a ²⁵²Cf SF source (2004Sm04,2005Sm08). T_{1/2} calculated assuming the same transition quadrupole moment as ¹⁰⁸Ru. Other: 0.26 ns 7 (1995Sc24). g: From ²⁵²Cf SF decay (2004Sm04,2005Sm08). 							
714.69 [#] 10	(4 ⁺)		AB DE	DE J^{π} : L=(4) in (t,p) and $(444\gamma)(270\gamma)(\theta)$ data consistent with 4-2-0 cascade.							
792.31 [@] 4	2^{+}		AB DE	B DE J^{π} : L=2 (t,p).							
990.62 5	0^{+}		ABC	J^{π} : L(t,p)=0.							
1091.55 [@] 7	(3 ⁺)		A DE	J^{π} : suggested by 1980Su01 from similar decay properties of this level compared to the 3 ⁺ levels in neighboring nuclei: ¹⁰² Ru, ¹⁰⁴ Ru, ¹⁰⁸ Ru. Consistent with (821 γ)(270 γ)(θ) data.							
1295.8 [#] 2	(6 ⁺)		DE	J^{π} : suggested from DWBA calculations in (¹⁸ O, ¹⁶ O).							
1306.8 [@]	(4 ⁺)		Е								
1392.21 7	2+		A	J ^{π} : deexcites to 0 ⁺ and 4 ⁺ states. (1122 γ)(270 γ)(θ) data consistent with 2-2-0 cascade.							
1641.1 [@]	(5^{+})		E								
1688.41 <i>21</i> 1774.37 <i>8</i>	(2 ⁺)		A AB	J^{π} : from L=(2) in (t,p). Consistent with J=2,3,4 suggestion from $(1504x)(270x)(\theta)$							
1885.61 9	(2 ⁺)		AB	J^{π} : from L=(2) in (t,p). Consistent with $(1615\gamma)(270\gamma)(\theta)$ data suggesting J=1,2,3.							
1907.8 [@]	(6^{+})		ΒE								
1973.4 ^{#} 4	(8 ⁺)		DE	XREF: E(1975).							
	. ,			J^{π} : from agreement with DWBA calculations in (¹⁸ O, ¹⁶ O).							
2151 8 2239.40 7	(1)		B A	J ^π : (1969γ)(270γ)(θ) suggests J=1. Consistent with predominant deexcitation to $0^+, 2^+$ states.							
2284.1 [@]	(7^{+})		Е								
2367 5 2467 10	(4 ⁺)		B B	L(t,p)=(4).							

Adopted Levels, Gammas (continued)

¹⁰⁶Ru Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XRI	EF	Comments
2485.5 ^a	(6 ⁻)		E	
2544.3 <mark>&</mark>	(7^{-})		Е	
2568.7		В	E	
2632.82 9	(0^{+})	AB		J^{π} : from L=(0) in (t,p). γ decay only to $J^{\pi}=2^+$ states consistent with $J^{\pi}=(0^+)$.
2701.43 8	(1)	Α		J^{π} : $(2431\gamma)(270\gamma)(\theta)$ suggests J=1. Consistent with predominant deexcitation to $0^+, 2^+$ states.
2705.0 [#]	10^{+}		E	
2728.7			E	
2771 5	(2^{+})	В		J^{π} : L(t,p)=(2).
2871.2 ^{<i>a</i>}	(8 ⁻)		E	
2876 10		В		J^{π} : possible doublet in (t,p).
2931 10		В		J^{π} : possible doublet in (t,p).
2945.94 15	(1,2)	Α		J^{π} : γ to 0^+ .
2960.1 [@]	(8^{+})		E	
2999.4			E	
3015.9			E	
3047.13 15	(1)	Α		J^{π} : $(2776\gamma)(270\gamma)(\theta)$ suggests J=1. Consistent with predominant deexcitation to $0^+, 2^+$ states.
3059.53 10	(1)	Α		J^{π} : $(2789\gamma)(270\gamma)(\theta)$ suggests J=1. Consistent with predominant deexcitation to $0^+, 2^+$ states.
3068.0 <mark>&</mark>	(9 ⁻)		E	
3186.43 15	(1)	Α		J^{π} : $(2916\gamma)(270\gamma)(\theta)$ suggests J=1. Consistent with predominant deexcitation to $0^+, 2^+$ states.
3209.7			E	
3259.43 15	(1)	Α		J^{π} : (2989 γ)(270 γ)(θ) suggests J=1. Consistent with predominant deexcitation to $0^+, 2^+$ states.
3364.13 9	(1)	Α		J^{π} : $(3093\gamma)(270\gamma)(\theta)$ suggests J=1. Consistent with predominant deexcitation to $0^+, 2^+$ states.
3423.2 ^{<i>a</i>}	(10^{-})		E	
3450.0 [#]	(12^{+})		E	
3550.98 16	(1)	Α		J^{π} : $(3281\gamma)(270\gamma)(\theta)$ suggests J=1. Consistent with predominant deexcitation to $0^+, 2^+$ states.
3704.7 <mark>&</mark>	(11^{-})		E	
3930.4 <i>3</i>	(1,2)	Α		J^{π} : γ to 0^+ .
4119.2 ^a	(12^{-})		E	
4241.0 [#]	(14^{+})		Е	
4445 7 <mark>&</mark>	(13-)		F	
1113.1	(15)		-	

[†] Calculated with a least-squares fit from gammas in ¹⁰⁶Tc β^- decay and (HI,xn γ) reaction. For gammas in (HI,xn γ) reaction $\Delta E=1$ keV was assumed by the evaluators.

 ‡ Based on measured γ mult and observed band structure, unless noted otherwise.

Band(A): g.s. band.

^(a) Band(B): $K^{\pi}=2^+$ band. [&] Band(C): Band based on (7⁻).

^{*a*} Band(D): Band based on (6⁻).

Adopted Levels, Gammas (continued)										
γ (¹⁰⁶ Ru)										
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	Iγ	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α #	$I_{(\gamma+ce)}$	Comments
270.07	2+	270.096 9	100	0.0	0+	[E2]				B(E2)(W.u.)=66 10 E _{γ} : from 1979Bo26. Others: 270.3 2 (1970HeZH), 269.8 4 (1969WiZX).
714.69	(4+)	444.60 20	100	270.07	2+	(E2)				Mult.: from δ =infinity in (444 γ)(270 γ)(θ). These values are consistent with pure Q but not precise enough to exclude a small D fraction.
		714.7 [@] 7		0.0	0^{+}					E_{γ} : Observed only in (¹⁸ O, ¹⁶ O). Impossible if J ^π 714 kev level is 4 ⁺ .
792.31	2+	522.22 5	100 7	270.07	$2^+_{0^+}$	M1+E2	7.1 +16-11	0.0045		Mult.: $\Delta \pi$ =no from decay scheme.
990.62	0+	792.51 5	100	270.07	0 2 ⁺	(E2)				Mult.: from J^{π} assignment. Consistent with δ =infinity from $(720\gamma)(270\gamma)(\theta)$. These values are consistent with pure Q but not precise enough to exclude a small D fraction.
		990.62 5		0.0	0^{+}	[E0]			33×10 ⁻⁴ 13	Mult.: from I(ce(K) 990 γ)=30×10 ⁻⁴ 12 in (t,p γ). E _{γ} : taken by the evaluators from level energies.
1091.55	(3+)	299.20 10	176	792.31	2^+					,
		376.90 20	11.0	714.69 270.07	(4^{+}) 2^{+}	D+O	-38+9-16			δ : $\delta = -0.5$ also consistent with $\gamma \gamma(\theta)$
1295.8	(6^{+})	581.1 2	100 11	714.69	(4^+)	DIQ	5.0 17 10			
1306.8	(4+)	515		792.31	2+					
	a +	592		714.69	(4^+)					
1392.21	21	401.50 20	73	990.62 714.60	0'					
		1122 20 10	25 5	270.07	(4) 2^+	M1+F2	0.24 + 13 - 12			Mult : $\Lambda \pi = no$ from decay scheme
		1392.20 10	23 3	0.0	$\tilde{0}^{+}$	1011 112	0.21 110 12			Walth Ext no nom doody scheme.
1641.1	(5+)	549 <i>1</i>		1091.55	(3 ⁺)					
		927 1		714.69	(4 ⁺)					
1688.41	(2^+)	896.10 20	100	792.31	2^+					
1//4.3/	(2^{+})	082.80 <i>10</i> 1504 30 <i>10</i>	33 3 100 10	270.07	(3^{+})					
1885.61	(2^{+})	1615.50 10	100 10	270.07	$\frac{2}{2^{+}}$					
1907.8	(6^+)	601 <i>I</i>	100	1306.8	(4^+)					
1973.4	(8^+)	677.6 4	100	1295.8	(6 ⁺)					E_{γ} : From (¹⁸ O, ¹⁶ O).
2239.40	(1)	353.70 20	2.9 8	1885.61	(2^+)					
		1248.80 10	4.1 8	990.62	0^+	D.O	0.00.7			
		1969.40 10	65 7 100 9	270.07	2' 0+	D+Q	0.29 /			
2284.1	(7^{+})	643 1	100 2	1641.1	(5^+)					
2485.5	(6 ⁻)	1189 <i>I</i>		1295.8	(6 ⁺)					
2544.3	(7 ⁻)	1247 1		1295.8	(6^{+})					

From ENSDF

L

$\gamma(^{106}\text{Ru})$ (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}
2568.7		1272 1		1295.8	(6^{+})		
2632.82	(0^{+})	1240.50 20	8.8 18	1392.21	2+		
		1840.50 10	100 12	792.31	2^{+}		
		2362.80 20	24 6	270.07	2+		
2701.43	(1)	1710.80 10	10.0 10	990.62	0^{+}		
		2431.30 20	45 5	270.07	2^{+}	D+O	-0.003 91
		2701.40 10	100 10	0.0	0^{+}		
2705.0	10^{+}	730 1		1973.4	(8^{+})		
2728.7		1432		1295.8	(6^+)		
2871.2	(8^{-})	386 1		2485.5	(6^{-})		
		896 1		1973.4	(8^+)		
2945.94	(1,2)	2153.60 20	9.8 16	792.31	2+		
		2945.90 20	100 8	0.0	0^{+}		
2960.1	(8^{+})	676 1		2284.1	(7^{+})		
2999.4		1024 1		1973.4	(8^{+})		
3015.9		1040 1		1973.4	(8^{+})		
		1720 <i>1</i>		1295.8	(6^{+})		
3047.13	(1)	2777.00 20	86 6	270.07	2+	D+Q	0.15 5
		3047.10 20	100 10	0.0	0^{+}		
3059.53	(1)	1667.50 20	3.5 14	1392.21	2+		
		2068.90 20	2.8 7	990.62	0^{+}		
		2267.20 20	18 4	792.31	2+		
		2789.30 20	100 8	270.07	2^{+}	D+Q	-0.5 6
		3059.40 20	7.8 7	0.0	0^{+}		
3068.0	(9-)	523 1		2544.3	(7^{-})		
		1094 <i>1</i>		1973.4	(8^{+})		
3186.43	(1)	2916.30 20	64 <i>6</i>	270.07	2+	D+Q	0.03 8
		3186.40 20	100 10	0.0	0^{+}		
3209.7		481 <i>I</i>		2728.7			
3259.43	(1)	2989.20 20	22.4 20	270.07	2+	D+Q	0.14 14
		3259.50 20	100 10	0.0	0^{+}		
3364.13	(1)	1478.50 10	40 5	1885.61	(2^{+})		
		1589.70 20	25 10	1774.37	(2^{+})		
		2571.90 20	100 10	792.31	2+		
		3093.90 20	55 5	270.07	2+	D+Q	0.20 + 15 - 14
		3364.20 <i>30</i>	90 10	0.0	0^{+}		
3423.2	(10^{-})	552 1		2871.2	(8 ⁻)		
3450.0	(12^{+})	745 1		2705.0	10+		
3550.98	(1)	2758.50 20	119	792.31	2*	D	0.05 10 10
		3281.10 <i>30</i>	41 5	270.07	2	D+Q	0.25 + 13 - 12
270 1 7	(11-)	3551.0 4	100 9	0.0	0^{\top}		
3704.7	(11^{-})	637 1		3068.0	(9-)		

4

γ (¹⁰⁶Ru) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	E_f	\mathbf{J}_f^{π}
3704.7	(11^{-})	705 1		2999.4	
3930.4	(1,2)	3660.4 4	100 14	270.07	2+
		3930.2 4	86 14	0.0	0^{+}
4119.2	(12^{-})	696 <i>1</i>		3423.2	(10^{-})
4241.0	(14^{+})	791 <i>1</i>		3450.0	(12^{+})
4445.7	(13 ⁻)	741 <i>1</i>		3704.7	(11 ⁻)

[†] Taken from ¹⁰⁶Tc β^- decay, except for those γ 's only observed in (HI,xn γ) reactions. [‡] Unless noted otherwise, from $\gamma\gamma(\theta)$ in ¹⁰⁶Tc β^- decay.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[@] Placement of transition in the level scheme is uncertain.

 $^{106}_{44}{
m Ru}_{62}$

 $^{106}_{44} {
m Ru}_{62}$

¹⁰⁶₄₄Ru₆₂