	His	tory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	D. De Frenne and A. Negret	NDS 109, 943 (2008)	1-May-2007

1987Co03: measured E γ , I γ with HPGe, ce with double-focusing electron spectrometer. Deduced: ¹⁰⁶Pd levels, J^{π} , B(E0)/B(E2) ratios.

1970Or05: thermal n capture γ spectra on natural target measured (semi) primary γ -ray mass assignments are in accordance with uniquely high S(n) for ¹⁰⁶Pd and corresponding E γ via av res n-capture (1970Bo29). Low-energy γ -ray assignments and placements are consistent with level schemes via (n,n' γ) and decay experiments.

Others: 1965Gr30, 1967Ba79.

¹⁰⁶Pd Levels

B(E0)/B(E2) from 1987Co03.

E(level) [†]	$J^{\pi \ddagger}$	Comments
0.0 511.87 6 1128.15 6 1133.86 7 1229.17 8 1557 74 7	0^+ 2^+ 2^+ 0^+ 4^+ 3^+	B(E0; 1133 to g.s.)/B(E2; 1133 to 511)=0.0154 14.
1562.24 6 1706.57 9	2+ 0+	B(E0; 1706 to g.s.)/B(E2; 1706 to 511)<0.038. B(E0; 1706 to g.s.)/B(E2; 1706 to 1128)<0.003. B(E0; 1706 to 1133)/B(E2; 1706 to 511)<2.0. B(E0; 1706 to 1133)/B(E2; 1706 to 1128)<0.13.
1904.31? <i>10</i> 1909.45 <i>9</i> 1022.27 0	$2^{-},3^{-}$ 2^{+}	E(level): level questioned by 1997De21.
2001.48 <i>11</i>	4 0 ⁺	B(E0; 2001 to g.s.)/B(E2; 2001 to 511)=12 3. B(E0; 2001 to g.s.)/B(E2; 2001 to 1128)=0.020 4. B(E0; 2001 to 1133)/B(E2; 2001 to 511)<37. B(E0; 2001 to 1133)/B(E2; 2001 to 1128)<0.28. B(E0; 2001 to 1706)/B(E2; 2001 to 511)<220. B(E0; 2001 to 1706)/B(E2; 2001 to 1128)<17
2076 2077.57 9 2084.50 8 2242.54 7 2278.48 14	6^+ (4) ⁺ 3^- 2^+ 0^+	B(E0; 2278 to g.s.)/B(E2; 2278 to 511)<0.35.
2282.72 11 2306.19 13 2308.70 9 2350.95 10 2366.21 11 2397.46 13 2400.7? 11 2439.18 9 2472.19 13 2485.33 13 2500.10 13 2578.63 10	$\begin{array}{c} 4^{+} \\ 4^{-} \\ 2^{+} \\ 4^{+} \\ 5^{+} \\ (5)^{-} \\ 2^{-}, 3^{-} \\ 2^{+} \\ 1^{+}, 2^{+} \\ (1^{-}) \\ 2^{-} \\ (4^{-}) \end{array}$	B(E0; 2278 to 1128)/B(E2; 2278 to 511)<7.5.
2624.40 5	0^{+}	E(level): taken from Adopted Levels.

105 Pd(n, γ),(n,e) E=thermal	1987Co03,1970Or05 (continued)
---	-------------------------------

¹⁰⁶Pd Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	Jπ‡
2626.87 9	$(2,3)^+$	2826.99 13	0+	2902.13 13	2+	3056.20 12	1+
2713.86 10	$2^+, 3^+$	2850.80 13	$2^+, 3^+$	2908.64 18	(1^{-})	3071.17 21	$(2,3)^{-}$
2747.72 15	$(2^{-}, 3^{-})$	2861.06 10	$(^{+})$	2918.55 10	2+	3173.77 11	$(2^+, 3^+)$
2775.94 9	(4^{+})	2878.36 14	0^{+}	2935.96 18	$(2^{-},3^{-})$	3221.70 15	0^{+}
2783.75 13	2+	2886.26 18	(_)	2968.65 19	3-	3319.57 <i>23</i>	0^{+}
2821.03 9	2^{+}	2897.35 13	$(1^{-}, 4^{-})$	3037.28 13	1,2	(9561.2 3)	$2^+, 3^+$

[†] As no detailed level scheme was given by 1987Co03, a level scheme was constructed by the evaluators based on adopted level scheme and γ 's observed by 1987Co03.

[‡] From Adopted Levels.

$\gamma(^{106}\text{Pd})$

Conversion electron data from 1987Co03. For a large number of unplaced γ 's see 1987Co03.

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult.	Comments
^x 346.59 <i>15</i>	≤8.9					E1	I_{γ} : from Iγ(346.59+347.14)=7.9 <i>10</i> . Mult.: from α(K)exp=0.0041 <i>10</i> for the 346.59+347.14
347.14 <i>13</i>	≤8.9	1904.31?	2-,3-	1557.74	3+	E1	I_{γ} : I γ =7.9 <i>10</i> for 346.59 γ +347.14 γ doublet in (n, γ). Mult.: from α (K)exp=0.0041 <i>10</i> for the 346.59+347.14 γ transitions.
374 00 14	233	1932 27	\mathcal{A}^+	1557 74	3+		Ly. No mu level while 0.19 kev.
418.4 7	1.6 11	2350.95	4+	1932.27	4+		
428 32 10	486	1562.24	2+	1133.86	0^{+}		$\alpha(K) \exp = 0.00047.6$
120.32 10	1.0 0	1502.21	2	1155.00	0		I_{γ} : calculated based upon $I\gamma(428\gamma$ from 1562 level)/ $I\gamma(1050\gamma) = 0.0453$ 15 and $I\gamma(429\gamma$ from 1557 level)/ $I\gamma(1045\gamma) = 0.445$ 19 in adopted gammas. However, a large fraction of the 429 peak, with $I\gamma = 102$ 12, remains unassigned.
429.65 10	43 6	1557.74	3+	1128.15	2+		α (K)exp=0.0041 5; α (L)exp=0.00061 8 I _y : calculated based upon Iy(428y from 1562 level)/Iy(1050y)= 0.0453 15 and Iy(429y from 1557 level0/Iy(1045y)=0.445 19 in adopted gammas. However, a large fraction of the 429 peak, with Iy=102 12 remains unassigned.
434.0 <i>3</i>	4.2 12	1562.24	2^{+}	1128.15	2^{+}		,
511.86 <i>12</i>	150×10 ¹	511.87	2+	0.0	0+		E_{γ} , I_{γ} : calculated from ce measurement. I γ is obscured in the singles spectrum by interference with 511 γ annihilation radiation. Therefore the intensity of that γ was calculated from the conversion electron spectra. No uncertainty on I γ was given in the paper.
522.31 12	1.5 2	2084.50	3-	1562.24	2^{+}		
533.53 12	2.3 3	2775.94	(4^{+})	2242.54	2^{+}		
578.60 11	3.8 5	1706.57	0+	1128.15	2^{+}		
616.23 11	281 34	1128.15	2+	511.87	2^{+}		K/L=8.0 15
622.02 12	57 7	1133.86	0^{+}	511.87	2^{+}		K/L=6 3
680.26 11	14.1 <i>17</i>	2242.54	2+	1562.24	2^{+}	M1,E2	α (K)exp=0.0017 3

Continued on next page (footnotes at end of table)

¹⁰⁵Pd(n,γ),(n,e) E=thermal **1987Co03,1970Or05** (continued)

$\gamma(^{106}\text{Pd})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.	Comments
							Mult.: $\alpha(K)$ exp also consistent with E1+M2 with δ =0.4.
684.78 11	5.3 6	2242.54	2+	1557.74	3+		
703.18 11	14.1 <i>17</i>	1932.27	4+	1229.17	4^{+}		α (K)exp=0.0020 3
717.44 11	310 38	1229.17	4+	511.87	2+		K/L= 7.7 <i>13</i>
748.45 11	31 4	2306.19	4-	1557.74	3+		α (K)exp=0.00080 <i>12</i>
765.67 12	1.0 1	2472.19	$1^+, 2^+$	1/06.57	0^+		
//5./5 11	4.5 5	1904.31?	2,3 4 ⁺	1128.15	2 · 2+		
795.50 11 804 38 11	7.0 0	2550.95	4 1+	1337.74	3 2+		$\alpha(K) = n - 0.0013.2$
004.30 11	54 7	1952.27	7	1120.15	2		$L_{\rm cr}$ from $L_{\rm c}(848)$ from 2077
							$1/1/(949) + 1565\gamma = 2.3.8 \text{ in } 106 \text{ Ag s decay}$
808.39 11	9.5.12	2366.21	5+	1557.74	3+		10001/17(0,0)7+10007)=2.500 m 112.00 decay.
848 ^C	20.9	2076	6 ⁺	1229.17	4+		I_{γ} : deduced from $I_{\gamma}(848\gamma$ from
							$2077)/I\gamma(949\gamma+1565\gamma)=2.3 8 \text{ in } {}^{106}\text{Ag }\varepsilon \text{ decay and}$
							$I\gamma=385$ for the doubly placed 848.
848.12 11	18 7	2077.57	$(4)^{+}$	1229.17	4+		$\alpha(K) \exp = 0.0015 \ 2$
873.56 11	6.6 8	2001.48	0^{+}	1128.15	2^{+}	[E2]	
949.53 11	1.8 2	2077.57	$(4)^{+}$	1128.15	2^{+}		
956.41 11	5.2 6	2084.50	3-	1128.15	2+		
1020.88 11	6.3 8	2578.63	(4^{-})	1557.74	3+		
1045.93 11	96 12	1557.74	3 ⁺ 2 ⁺	511.87	2+ 2+		K/L=8.5 13
1050.42 11	100 13	1302.24	2 · 4+	511.87 1220.17	2 · 1+	M1 E2	$\alpha(\mathbf{K})\exp=0.0011\ 2;\ \alpha(\mathbf{L})\exp=0.00014\ 3$
1055.70 11	17.6 22	2202.72	4 0 ⁺	1229.17	$\frac{4}{2^+}$	WI1,EZ	$u(\mathbf{K})\exp[-0.00097, 15]$
1064 60 11	1.5 2	2624.40	$(2 3)^+$	1562.24	$\frac{2}{2^{+}}$		
1108.69 11	4.1.5	2242.54	2^+	1133.86	$\tilde{0}^{+}$		
1114.42 11	8.2 10	2242.54	2^{+}	1128.15	2+		$\alpha(K) \exp = 0.0015 \ 3$
1128.11 11	94 12	1128.15	2+	0.0	0^{+}	E2	K/L=9.5 19
1133.8 2		1133.86	0^{+}	0.0	0^{+}	E0	ce(K)=0.021 10
1137.13 12	0.6 1	2366.21	5+	1229.17	4+		
1156.28 12	4.6 6	2713.86	$2^+, 3^+$	1557.74	3+		
1168.28 11	17.1 21	2397.46	$(5)^{-}$	1229.17	4 ⁺		α (K)exp=0.00053 <i>19</i>
1180.24 13	5.1 / 0.2 / 1	2308.70	2	1128.15	2+	M1 E2	$(K)_{res} = 0.000(1.0)$
1194.55 11	9.3 11	1/06.57	0.	511.87	2	MI,E2	$\alpha(K) \exp = 0.00001.9$ Mult : M1 excluded if $I^{\pi}(511) = 2^+$
1218 26 14	366	2775 94	(4^{+})	1557 74	3+		Mult WI excluded If $\mathbf{J}(\mathbf{J}\mathbf{II})=2$.
1258.65 16	1.3.2	2821.03	2+	1562.24	2+		
1267.18 16	0.6 1	2826.99	$\bar{0}^{+}$	1002121	-		E_{γ} : No final level within 0.77 keV.
1302.98 11	2.7 3	2861.06	(+)	1557.74	3+		····
1305.43 11	1.5 2	2439.18	2+	1133.86	0^+		
1316.15 18	0.3 1	2878.36	0^{+}	1562.24	2+		
1349.50 11	9.0 11	2578.63	(4 ⁻)	1229.17	4+		
1356.46 14	0.6 1	2918.55	2+	1562.24	2+		
1360.92 11	1.7 2	2918.55	2+ 2+	1557.74	3+		
1397.62 11	25 3	1909.45	2^{+} 2+ 2+	511.8/	2 · 4+		
1489 00 16	2.33	2001.48	$^{2},^{3}$	511.87	+ 2+	F2	$\alpha(K) \exp [0.00033]$
1495.17 14	1.0 7	2624.40	0^{+}	1128.15	2+	112	u(11)04p=0.00055
1498.75 ^{<i>a</i>} 11	8.3 ^{<i>a</i>} 10	2626.87	$(2,3)^+$	1128.15	$\frac{-}{2^{+}}$		
1498.75 ^{<i>a</i>} 11	8.3 ^{<i>a</i>} 10	3056.20	1+	1557.74	3+		
1546.64 16	1.3 2	2775.94	(4^{+})	1229.17	4+		
1554.50 15	0.4 1	2783.75	2+	1229.17	4+		
1562.26 11	9.7 12	1562.24	2+	0.0	0^{+}		
1565.76 11	5.9 7	2077.57	$(4)^{+}$	511.87	2+		
1572.60 11	61 7	2084.50	3-	511.87	2+		α (K)exp=0.00020 3

Continued on next page (footnotes at end of table)

			¹⁰⁵ Pd(n, γ),	(n,e) E=th	nermal	1987Co	03,1970Or05 (continued)
					γ (¹⁰⁶ Pd) (continu	ed)
E _v †	I_{ν}^{\ddagger}	E _i (level)	J^{π}_{\cdot}	\mathbf{E}_{f}	J^{π}_{c}	Mult.	Comments
1616.00.12	186	3173 77	$\frac{l}{(2^+ 3^+)}$	1557.74	<u>J</u> 2+		E · No final lavel within 0.50 keV
1621 62 11	648	2850.80	(2, 3) $2^+ 3^+$	1229 17	3 4 ⁺		E_{γ} . Ivo iniai level within 0.59 kev.
1632.22 11	1.9 2	2861.06	(⁺)	1229.17	4+		
1655.66 17	0.8 1	2783.75	2+	1128.15	2+		
1668.17 <i>11</i>	3.7 4	2897.35	(1-,4-)	1229.17	4+		
1687.05 15	0.5 1	2821.03	2+ 2+	1133.86	0^+		
1693.08 12	1.0 1	2821.03	2+	511.87	2+		
1766.60 12	3.54	2242.34	0^{+}	511.87	$\frac{2}{2^{+}}$	E2	$\alpha(K) \exp = 0.00031$ 7
1770.49 16	1.7 2	2282.72	4 ⁺	511.87	$\frac{1}{2^{+}}$		
1773.74 15	3.3 5	2902.13	2+	1128.15	2+		
1796.87 11	11.7 14	2308.70	2+	511.87	2+		
1838.96 12	2.8 3	2350.95	4+	511.87	2+		
1909.36° 12	7.80 18	1909.45	2+	0.0	0+		I _{γ} : deduced from I γ (1909 γ from 1909 level)/I γ (1398 γ)=0.31 6 in (n,n' γ).
1909.36 ^b 12	6.1 ^b 25	3037.28	1,2	1128.15	2+		I_{γ} : from $I_{\gamma}=13.9 \ 17$ for the doubly placed 1909 γ .
1927.19 12	14.5 17	2439.18	2^+	511.87	2^+		
1960.17 20	1.2.2	2472.19	$(1^{-})^{2^{+}}$	511.87	2 · 2+		
1988.23 12	22.3	2500.10	2^{-}	511.87	$\frac{2}{2^{+}}$		
2002 1		2001.48	$\bar{0}^{+}$	0.0	$\bar{0}^{+}$	E0	ce(K)=1.4 2
2044.26 14	3.6 6	3173.77	$(2^+, 3^+)$	1128.15	2+		
2083.96 27	0.5 1	2084.50	3-	0.0	0^+		
2093.52 13	3.4 5	3221.70	0^+	1128.15	2+ 2+		
2112.27 14	1.8.5	2624.40	$(2 3)^+$	511.87	2+ 2+		
2185.68 21	1.2.2	3319.57	(2,3) 0^+	1133.86	0^{+}		
2202.07 15	1.4 2	2713.86	2+,3+	511.87	2+		
2235.81 14	17 3	2747.72	(2 ⁻ ,3 ⁻)	511.87	2+		
2242.87 15	1.6 3	2242.54	2^+	0.0	0^+		
2203.84 17	2.5 4	2783 75	(4^{+}) 2 ⁺	511.87	2+ 2+		
2271.0 + 15 2309.00 ^b 16	$< 0.86^{b}$	2705.75	$\frac{2}{2^+}$	0.0	2 0+		$L : from I_{2}(2300) from 2300$
2309.00 10	<u>_0.80</u>	2308.70	2	0.0	0		level)/I γ (1180 γ +1797 γ) \leq 0.051 8 in ¹⁰⁶ Ag ε decay.
2309.00 ^b 16	6.1 ^b 12	2821.03	2+	511.87	2+		I _{γ} : from I γ (2309 γ from 2309 level) as given, and I γ =6.6 10 for the doubly placed 2309 γ .
2317.20 16	3.5 6	2826.99	0+		- 1		E_{γ} : No final level within 0.77 keV.
2366.42 17	1.8 3	2878.36	0^+	511.87	2^+		
23/4.30 1/	0.3 10 7 5 12	2886.26	$\binom{1}{2^+}$	511.87	2+ 2+		
2396.74 17	15.6.24	2902.13	(1^{-})	511.87	$\frac{2}{2^{+}}$		
2406.02 19	6.0 10	2918.55	2+	511.87	$\frac{1}{2^{+}}$		
2424.06 17	8.6 13	2935.96	$(2^{-}, 3^{-})$	511.87	2^{+}		
2439.09 18	5.4 8	2439.18	2+	0.0	0^{+}		
2456.68 18	6.3 10	2968.65	3^{-}	511.87	$2^+_{0^+}$		
2484.80 19	122	2485.33	(1)	0.0	0^{+} 2 ⁺		E · No final level within 1.3 keV
2543.19 21	4.8.8	3056.20	1, 2 1+	511.87	2 ⁺		E_{γ} . No final level within 0.96 keV
2559.24 20	12.9 20	3071.17	(2,3) ⁻	511.87	$\bar{2}^{+}$		
6489.1 [#] 10	0.08	(9561.2)	2+,3+	3071.17	$(2,3)^{-}$		
6590.1 [#] 10	0.09@	(9561.2)	2+,3+	2968.65	3-		
6624.8 [#] 10	0.18	(9561.2)	2+,3+	2935.96	$(2^{-}, 3^{-})$		
6652.2 [#] 10	0.16 [@]	(9561.2)	$2^{+}.3^{+}$	2908.64	(1 ⁻)		

Continued on next page (footnotes at end of table)

¹⁰⁵Pd(n,γ),(n,e) E=thermal 1987Co03,1970Or05 (continued)

$\gamma(^{106}\text{Pd})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Comments
6735.4 [#] 10	0.24	(9561.2)	2+,3+	2826.99	0+	
6812.0 [#] 10	0.12 [@]	(9561.2)	2+,3+	2747.72	(2-,3-)	
7061.7 [#] 10	$0.08^{\textcircled{0}}{0}$	(9561.2)	$2^+, 3^+$	2500.10	2-	
7075.1 ^{#} 10	0.05 [@]	(9561.2)	2+,3+	2485.33	(1 ⁻)	
7122.2 [#] 10	0.09 [@]	(9561.2)	2+,3+	2439.18	2+	
7160.2 10	0.10 ^{&} 3	(9561.2)	2+,3+	2400.7?	2-,3-	E_{γ} : from 1970Bo29, av res n-capture; other: 7150 7 (1965Gr30).
7476.0 [#] 10	$0.08^{\textcircled{0}}{0}$	(9561.2)	$2^+, 3^+$	2084.50	3-	
7629.0 11	0.14 ^{&} 4	(9561.2)	2+,3+	1932.27	4+	E_{γ} : from 1970Bo29, av res n-capture; other: 7614 6 (1965Gr30).
7996.3 [#] 10	0.05 [@]	(9561.2)	$2^+, 3^+$	1562.24	2+	
8002.6 [#] 10	0.05 [@]	(9561.2)	2+,3+	1557.74	3+	
8331.2 [#] 10	0.11 [@]	(9561.2)	2+,3+	1229.17	4+	
8433.6 10	0.05 ^{&} 1	(9561.2)	2+,3+	1128.15	2+	E_{γ} : from 1970Bo29, av res n-capture; other: 8417 9 (1965Gr30).
9049.8 10	0.020 ^{&} 5	(9561.2)	2+,3+	511.87	2+	E_{γ} : from 1970Bo29, av res n-capture; other: 9029 8 (1965Gr30).

[†] Unless noted otherwise, from 1987Co03.

[‡] From 1987Co03. Intensity normalization of the γ -ray and ce data was performed assuming that the 622, 717, 804, 1128 and 1195 γ 's are E2.

[#] From 1970Or05. [@] From 1970Or05: photons per 100 n-captures in natural palladium, $\Delta I\gamma$ not given. [&] From 1965Gr30. ^a Multiply placed with undivided intensity.

^b Multiply placed with intensity suitably divided.

^c Placement of transition in the level scheme is uncertain. ^x γ ray not placed in level scheme.

¹⁰⁵**Pd**(\mathbf{n}, γ),(\mathbf{n}, \mathbf{e}) **E=thermal** 1987Co03,1970Or05

¹⁰⁵Pd(\mathbf{n}, γ),(\mathbf{n}, \mathbf{e}) E=thermal 1987Co03,1970Or05

¹⁰⁵Pd(n,γ),(n,e) E=thermal 1987Co03,1970Or05

