¹⁰⁶Rh β^- decay (131 min) 1971Ta09,1966De11

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	D. De Frenne and A. Negret	NDS 109, 943 (2008)	1-May-2007						

Parent: ¹⁰⁶Rh: E=137 *13*; $J^{\pi} = (6)^+$; $T_{1/2} = 131 \text{ min } 2$; $Q(\beta^-) = 3541 6$; $\%\beta^-$ decay=100.0

¹⁰⁶Rh-E: Adopted Value from $Q(\beta^{-})-Q(\beta^{-})(g.s.)$.

1971Ta09: ¹⁰⁶Rh activity from ¹⁰⁶Pd(n,p) and ¹⁰⁹Ag(n, α). Measured: E γ , I γ , E β , $\gamma\gamma$. Deduced: ¹⁰⁶Pd levels, J^{π} , log ft and Q(β^{-}).

1966De11: ¹⁰⁶Rh activity from ¹⁰⁶Pd(d,2p) and ¹⁰⁸Pd(d, α). Measured: E β , I β , E γ , I γ , Ice, $\beta\gamma$, α , Q(β^{-}). Deduced: ¹⁰⁶Pd levels, J^{π} , log *ft*.

Others: 1955Ne03, 1958Ma39, 1960Se07, 1969An12.

 $\gamma\gamma$ (see drawings) 1971Ta09 semi-scin spectra.

 $Q(\beta^{-})=3677 \ 10$ deduced from $E\beta=920 \ 10$ to 2757 excitation; see 1966De11.

¹⁰⁶Pd Levels

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	Jπ‡
0.0	0^+	1557.80 9	3+	2085.07 13	3-	2757.94 10	5+
511.52 8 1127.89 8	2^+ 2^+	1932.69 <i>12</i> 2076.79 <i>23</i>	4^+ 6^+	2306.78 <i>11</i> 2351.98 <i>10</i>	4- 4+	2953.18 12	5+
1228.78 10	4+	2077.18 16	$(4)^+$	2366.50 19	$(4)^{+}$		

[†] From a least squares fit to the given gamma energies.

[‡] From Adopted Levels, gammas.

β^{-} radiations

E(decay)	E(level)	Ιβ ^{-†}	Log ft	Comments						
700 50	2953.18	14.5 18	5.61 6	av E β = 240 4						
920 10	2757.94	85 10	5.21 6	E(decay): 700 50 (1966De11) s, 790 40 (1960Se07) scin. av $E\beta = 318.4$						
(1010.10)	2266 50			E(decay): 920 10 (1966De11) s, 950 30 (1960Se07) scin.						
(1312 14)	2366.50	<4.4	>7.1	av $\mathbf{E}\beta = 483.4$						
(1326 14)	2351.98	<3.7	>7.2	av $E\beta = 489.4$						
(1371 14)	2306.78	<3.4	>7.3	av $E\beta = 509 4$						
(1593 14)	2085.07	<1.2	>8.0	av $E\beta = 607.4$						
(1601 14)	2076.79	1.65 19	7.84 6	av $E\beta = 610 4$						
				$E(\beta^{-}) \max = 1700 \ 50 \ (1966 \text{De}11) \text{ s}, \ 1750 \ 50 \ (1971 \text{Ta}09) \ \text{scin}, \ 1620 \ 20 \ (1960 \text{Se}07)$						
				scin.						
				$I\beta^-$: ≈ 0 from level intensity balance.						
(1745 14)	1932.69	<2.9	>7.7	av $E\beta = 675 4$						

[†] Absolute intensity per 100 decays.

 $\gamma(^{106}\text{Pd})$

Iy normalization: for $I(\gamma+ce)=100$ to g.s.; IT decay unobserved.

 $\Delta I\gamma$: Only statistical uncertainty given. Evaluators added quadratically an uncertainty of 5% due to the systematic deviation of the gamma data compared to other similar experiments.

 $\alpha(K)\exp=ce(K)/I\gamma$ normalized to $\alpha(K)(511.8\gamma)=0.00484$ 7 (E2 theory) I(ce(K)) data are from 1966De11.

For gamma branching-ratio data, see also 8.46-d ¹⁰⁶Ag decay.

106 Rh β^- decay (131 min) 1971Ta09,1966De11 (continued)								
$\gamma(^{106}\text{Pd})$ (continued)								
E_{γ}^{\dagger}	I_{γ}^{\dagger} &	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult. [#]	α [@]	Comments
195.1 <i>4</i> 221.8 <i>1</i>	0.7 <i>1</i> 7.5 <i>4</i>	2953.18 2306.78	5+ 4-	2757.94 2085.07	5+ 3 ⁻	M1(+E2) M1+E2	0.061 0.0444 <i>1</i>	$\alpha(K)=0.03809 \ 18; \ \alpha(L)=0.00462 \ 7; \ \alpha(M)=0.00087; \ \alpha(N+)=0.00015 \ \alpha(K)=0.024 \ 5$
228.6 <i>3</i> x319.6 <i>4</i>	2.4 <i>16</i> 1.0 2	2306.78	4-	2077.18	$(4)^{+}$	E1	0.015	$u(\mathbf{K}) \exp[-0.054]{J}$
328.3 <i>4</i> 374.5	1.4 2 0.32 <i>3</i>	1557.80 1932.69	3+ 4+	1228.78 1557.80	4 ⁺ 3 ⁺	E2(+M1)	0.022	I _{γ} : from I _{γ} (374 γ)/I _{γ} (804 γ)=0.021 3
390.8 4	4.1 3	2757.94	5+	2366.50	(4)+	M1+E2	0.0126	$\alpha(K)=0.01083; \alpha(L)=0.00143; \alpha(M)=0.00027$
406.0 1	13.6 8	2757.94	5+	2351.98	4+	M1+E2	0.0110 <i>1</i>	$\alpha(K) \exp=0.015 \ 6$ $\alpha(K) = 0.00950; \ \alpha(L) = 0.00124;$ $\alpha(M) = 0.00023$ $\alpha(K) \exp=0.010 \ 5$
419.2 <i>4</i> 429.4 <i>1</i>	0.7 2 15.5 24	2351.98 1557.80	4+ 3+	1932.69 1127.89	4 ⁺ 2 ⁺	M1+E2	0.00930 1	$\alpha(K)=0.00813; \alpha(L)=0.00106; \alpha(M)=0.00020 \alpha(K)=0.00920$
(433.9) 450.8 <i>1</i>	0.2 <i>CA</i> 28.3 <i>15</i>	2366.50 2757.94	$(4)^+$ 5 ⁺	1932.69 2306.78	4 ⁺ 4 ⁻	E1		$\alpha(K)=0.00216; \ \alpha(L)=0.00027$
^x 473.2 4 511.7 1	1.0 5 100 5	511.52	2+	0.0	0^{+}	E2		$\alpha(K) = 0.00484; \ \alpha(L) = 0.00061$
586.0 4	1.0 <i>I</i>	2953.18	5+	2366.50	(4)+	M1,E2		$\alpha(K)\exp=0.0049\ 11\ (1966De11)$
601.2 <i>3</i> 616 1 <i>1</i>	3.5 2 23 6 16	2953.18 1127.89	5^+ 2 ⁺	2351.98	4^+ 2 ⁺	M1+E2 M1+E2		$\alpha(K)=0.00296; \alpha(L)=0.00035$
645.0.0	2010 10	2052.10	-	0006 70	-	F1		$\alpha(K) \exp[-0.00295]$
645.8 2 680.6 3	3.2 2 2.2 1	2953.18 2757.94	5+ 5+	2306.78 2077.18	$(4)^+$	E1 M1,E2		Transition to J(final)= 6^+ is inferred from I(γ +ce) balance.
703.1 2 717.2 <i>1</i>	5.2 <i>5</i> 33.8 <i>18</i>	1932.69 1228.78	4+ 4+	1228.78 511.52	4+ 2+	M1+E2 E2		$\alpha(K)=0.00195; \alpha(L)=0.00024$
71951	22612	2206 78	4-	1557 80	2+	E 1		α (K)exp=0.0015 6
793.8 2	6.6 11	2300.78	4 4 ⁺	1557.80	3+ 3+	M1+E2		
804.6 2	15.2 13	1932.69	4+	1127.89	2^{+}	E2		
808.4 2	8.7 5	2366.50	$(4)^{+}$	1557.80	3+	M1+E2		
825.0 1	15.9 9	2757.94	5+	1932.69	4+	M1+E2		
848.0 ^a 2	1.9 ⁴⁴ CA	2076.79	6	1228.78	4'			Doublet $1\gamma(848\gamma)=4.2.5$ minus $1\gamma=2.3$ component via 4^+ 2077-keV state
848.0 ^{<i>a</i>} 2	2.3 ^{<i>a</i>} CA	2077.18	(4)+	1228.78	4+	E2		I_{γ} : from $I_{\gamma}(1565\gamma)/I_{\gamma}(848\gamma)=0.31$ (1973In08, ¹⁰⁶ Ag decay).
(956.2)	0.56 CA	2085.07	3-	1127.89	2+			
1020.5 3	2.3 2	2953.18	5+	1932.69	4+	M1,E2		
1046.7 1	35.5 <i>18</i>	1557.80 2351.98	3+ 4+	511.52 1228 78	2 ⁺ 4 ⁺	M1+E2		$\alpha(\mathbf{K}) = 0.00080$ $\alpha(\mathbf{K}) \exp = 0.00068 \ I6$ L _x : from Ly(1122y)/Ly(1223y) = 0.081.9
(1122)	0.0 0/1	2001.70		1220.70				$(1973In08, {}^{106}Ag \text{ decay}).$
1127.7 1	16 <i>I</i>	1127.89	2+	0.0	0+	E2		$\alpha(K) = 0.0008$ $\alpha(K) \exp = 0.00053$ 16
(1136.8) (1200.5 <i>I</i>)	0.5 <i>CA</i> 13.3 7	2366.50 2757.94	$(4)^+$ 5 ⁺	1228.78 1557.80	4+ 3+	E2		$\alpha(K)=0.00059$ $\alpha(K)\exp=0.00069 22$

Continued on next page (footnotes at end of table)

¹⁰⁶Rh β^- decay (131 min) 1971Ta09,1966De11 (continued)

γ (100 Pd) (continued)									
E_{γ}^{\dagger}	I_{γ} †&	E_i (level)	\mathbf{J}_i^{π}	$E_f J_j^r$. Mult. [#]	α [@]	Comments		
1224.2 <i>1</i>	9.5 8	2351.98	4+	1127.89 2	E2		$\alpha(K)=0.00057$ $\alpha(K)=0.00061$ 16		
1395.5 <i>1</i>	3.3 4	2953.18	5+	1557.80 3	- [E2]		$\alpha(K) = 0.00043$ $\alpha(K) = 0.0007 3$		
1529.4 <i>1</i> 1565.4 <i>3</i>	20.5 <i>18</i> 0.7 <i>5</i>	2757.94 2077.18	5^+ (4) ⁺	1228.78 4 ⁻ 511.52 2 ⁻	M1+E2		α (K)exp=0.00033 <i>10</i>		
1573.9 2 1724.6 2 1840.6 2	7.8 6 2.6 5 2.2 4	2085.07 2953.18 2351.98	3 ⁻ 5 ⁺ 4 ⁺	511.52 2 ⁻ 1228.78 4 ⁻ 511.52 2 ⁻	E1 M1+E2 E2	0.00026	α(K)exp=0.00037 13		

$\gamma(^{106}\text{Pd})$ (continued)

[†] From semi γ -singles analysis (1971Ta09), unless otherwise noted. Where comparison possible, E γ systematically 0.7-1.5 keV higher than in (α ,2n γ), ¹⁰⁶Ag ε decay (8.46 d), and (n,n' γ) data.

[‡] Only statistical uncertainty given. Evaluators added quadratically an uncertainty of 5% due to the systematic deviation of the gamma data compared to other similar experiments.

[#] Deduced from $\alpha(K)$ exp including 8.46-d ¹⁰⁶Ag decay data.

[@] Calculated for δ from adopted gammas.

& For absolute intensity per 100 decays, multiply by 0.855 7.

^{*a*} Multiply placed with intensity suitably divided.

 $x \gamma$ ray not placed in level scheme.

106 Rh β^- decay (131 min) 1971Ta09,1966De11

4

 $^{106}_{46}\text{Pd}_{60}\text{--}4$