History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	D. De Frenne and A. Negret	NDS 109, 943 (2008)	1-May-2007						

1981Wi10: 90 Zr(19 F,3n γ) E(19 F)=62-82 MeV. Measured: E γ , I γ , $\gamma\gamma$, $\gamma(\theta)$. Deduced: 106 In levels, J^{π} , δ .

1995Se08: ⁵⁴Fe(⁵⁸Ni,5pn γ) E=270 MeV. Measured E γ , I γ , $\gamma\gamma$, γ -p coin, γ -n coin using the Nordball detector array of 15 BGO Compton-suppressed Ge detectors combined with a 2π inner ball of 30 BaF₂detectors, a 4π charged-particle detector array of 21 Si detectors and a 1π neutron detector wall of 11 liquid scintillator detectors. The Ge detectors in Nordball array were arranged at 37.3° , 79.1° , 100.9° and 142.6° with respect to the beam axis.

 $R_{asymm} = I_{\gamma}(142.6^{\circ})/[I_{\gamma}(79.1^{\circ}) + I_{\gamma}(100.9^{\circ})]$. Expected ratios are 0.9 for $\Delta J = 1$, dipole transitions and 0.5 for $\Delta J = 2$, quadrupole and $\Delta J=0$, dipole transitions.

¹⁰⁶In Levels

E(level) ^{†#}	J ^π @	Comments
0.0‡	7+	Configuration= $\pi g_{9/2}^{-1} \otimes v d_{5/2}$.
147.18 [‡] 4	(7^{+})	Configuration= $\pi g_{0/2}^{-1} \otimes v g_{7/2}$.
820.52 9	(8^{+})	Configuration= $\pi g_{0/2}^{2/5} \otimes v g_{7/2}$.
1117.62 13	(8^{+})	Configuration= $\pi g_{9/2}^{-1} \otimes v^3$, 4-qp state.
1307.08 7	(9 ⁺)	Configuration= $\pi g_{0/2}^{-1} \otimes v^3$, 4-qp state.
1406.82 17	(9 ⁺)	Configuration= $\pi g_{9/2}^{2/1} \otimes v^3$, 4-qp state.
1419.36 ^{&} 5	(8 ⁻)	Member of $\pi g_{9/2}^{-1} \otimes v h_{11/2}$ multiplet.
1628.30 ^{&} 15	(9 ⁻)	Member of $\pi g_{0/2}^{-1} \otimes v h_{11/2}$ multiplet.
1713.69 20	(10^{+})	Configuration $= \pi g_{9/2}^{-1} \otimes v^3$, 4-qp state.
1956.96 22	(11^{+})	Configuration= $\pi g_{9/2}^{2\Gamma} \otimes v^3$, 4-qp state.
2148.41 ^{&} 15	(10^{-})	Member of $\pi g_{0/2}^{-1} \otimes v h_{11/2}$ multiplet.
2174.21 23	(11^{+})	Configuration= $\pi g_{0/2}^{-1} \otimes v^3$, 4-qp state.
2730.88 ^{&} 15	(11 ⁻)	(9^{-}) , 1628 coupled to first 2 ⁺ in ¹⁰⁶ Sn.
3182.19 ^{&} 16	(12^{-})	(10^{-}) , 2148 coupled to first 2 ⁺ in ¹⁰⁶ Sn.
3217.00 ^{<i>a</i>} 17	(12 ⁻)	
3456.93 ^{&} 16	(13-)	
3638.81 ^a 21	(13 ⁻)	
3783.23 ^{&} 17	(14 ⁻)	
4007.10 ^{<i>a</i>} 23	(14^{-})	
4331.58 ^{&} 22	(15 ⁻)	
4486.4 ^{<i>a</i>} 3	(15 ⁻)	
4980.3 ^{<i>a</i>} 6	(16 ⁻)	
5483.2 ^{<i>d</i>} 7	(17 ⁻)	

[†] From least-squares fit to $E\gamma's$ (by evaluators) not using 239.27 γ in the fitting procedure; normalized $\chi^2=1.27$. Inclusion of 239.27 γ in the fitting procedure gives poor fit with normalized χ^2 =3.0, higher than the critical value of 2.2. [‡] Mixed configurations: $\pi g_{9/2}^{-1} \otimes v d_{5/2}$ and $\pi g_{9/2}^{-1} \otimes v g_{7/2}$. The dominant component for each is listed under comments.

[#] From 54 Fe(58 Ni,5pn γ) E=270 MeV (1995Se08).

[@] From Adopted Levels.

& Band(A): Negative parity yrast structure.

^a Band(B): (12⁻) sequence.

$(HI,xn\gamma)$ 1995Se08,1981Wi10 (continued)

$\gamma(^{106}\text{In})$

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.	Comments
147.18 4	29.3 17	147.18	(7^{+})	0.0 7	+		R _{asymm} =1.50 16.
208.9 2	104 <i>3</i>	1628.30	(9-)	1419.36 (8	8-)	D+Q	$R_{asymm} = 1.01 \ 6.$
							$\Delta J=1,0$ and $\delta = -0.03$ or 1.3 in ${}^{90}Zr({}^{19}F,3n\gamma)(1981Wi10)$.
239.27 11	7.3 8	3456.93	(13 ⁻)	3217.00 (1	12-)		E_{γ} : poor fit. Level-energy difference=239.93.
243.27 10	21 4	1956.96	(11^{+})	1713.69 (1	$10^{+})$		R _{asymm} =0.76 15.
274.74 <i>3</i>	49 2	3456.93	(13 ⁻)	3182.19 (1	12-)	D+Q	R _{asymm} =0.96 9.
							$\Delta J=1$ and $\delta = -0.07$ in ${}^{90}Zr({}^{19}F,3n\gamma)(1981Wi10)$.
306.79 18	4.7 8	1713.69	(10^{+})	1406.82 (9	9 ⁺)		
326.30 5	36.6 17	3783.23	(14^{-})	3456.93 (1	13-)	D+Q	R _{asymm} =0.61 9.
							$\Delta J=1$ and $\delta = -0.03$ in 90 Zr(19 F,3n γ)(1981Wi10).
368.29 8	27 2	4007.10	(14 ⁻)	3638.81 (1	13-)		R _{asymm} =0.47 14.
406.8 <i>3</i>	10 <i>3</i>	1713.69	(10^{+})	1307.08 (9	9 ⁺)		R _{asymm} =0.76 19.
421.69 14	15.0 16	3638.81	(13-)	3217.00 (1	12-)		$R_{asymm} = 0.9 2.$
451.30 5	52 <i>3</i>	3182.19	(12^{-})	2730.88 (1	11-)	D+Q	R _{asymm} =0.86 11.
							$\Delta J=1$ and $\delta = -0.01$ in ${}^{90}Zr({}^{19}F,3n\gamma)(1981Wi10)$.
457.2 <i>3</i>	7.8 15	3638.81	(13-)	3182.19 (1	12-)		
460.52 11	20 2	2174.21	(11^{+})	1713.69 (1	$10^{+})$		$R_{asymm} = 1.2 \ 3.$
479.27 16	12.8 18	4486.4	(15^{-})	4007.10 (1	14-)		
486.07 8	30 2	3217.00	(12^{-})	2730.88 (1	11-)		R _{asymm} =1.16 <i>16</i> .
493.9 5	72	4980.3	(16 ⁻)	4486.4 (1	15-)		
502.9 4	3 1	5483.2	(17^{-})	4980.3 (1	16-)		
510.71 14	11.7 14	1628.30	(9 ⁻)	1117.62 (8	8+)		
520.10 <i>3</i>	85 <i>3</i>	2148.41	(10^{-})	1628.30 (9	9-)	D+Q	$\Delta J=2,1,0$ and $\delta=+8.1$ or -0.17 or $+0.6$ in
							90 Zr(19 F,3n γ)(1981Wi10).
							R _{asymm} =0.97 9.
548.35 14	12.9 14	4331.58	(15 ⁻)	3783.23 (1	14-)		
582.46 4	70 <i>3</i>	2730.88	(11^{-})	2148.41 (1	10-)	D+Q	$R_{asymm} = 0.87 \ 9.$
							$\Delta J=1,0$ and $\delta = -0.05$ or 1.15 in ${}^{90}Zr({}^{19}F,3n\gamma)$.
586.24 17	15 4	1406.82	(9 ⁺)	820.52 (8	8+)		$R_{asymm} = 0.9 \ 3.$
673.38 9	16.2 <i>14</i>	820.52	(8+)	147.18 (1	7+)		$R_{asymm} = 0.8 \ 3.$
820.2 2	6.8 12	820.52	(8+)	0.0 7			
970.3 2	6.1 12	1117.62	(8+)	147.18 (1	(/ ⁺)		
1034.1 2	5.2 10	3182.19	(12^{-})	2148.41 (1	10^{-})		
1102.7 3	4.79	2/30.88	(11)	1628.30 (9	9)		
1117.8 2	6.4 12	1117.62	(8+)	0.0 7	Ŧ		
1225‡		3182.19	(12-)	1956.96 (1	11+)		E_{γ} : from level-scheme figure of 1995Se08, not given in authors' list with gamma ray energies.
1272.1 <i>3</i>	4.7 12	1419.36	(8 ⁻)	147.18 (7	7+)		· · · · -
1307.08 7	35 <i>3</i>	1307.08	(9 ⁺)	0.0 7	+		$R_{asymm} = 1.8 \ 3.$
1419.35 5	100 5	1419.36	(8 ⁻)	0.0 7	+	D+Q	R _{asymm} =0.87 9.
							$\Delta J=1,0$ and $\delta=0$ or -11.4 in ${}^{90}Zr({}^{19}F,3n\gamma)(1981Wi10)$.

[†] From ⁵⁴Fe(⁵⁸Ni,5pnγ) E=270 MeV (1995Se08).
[‡] Placement of transition in the level scheme is uncertain.

 $^{106}_{49} In_{57}$

(HI,xnγ) 1995Se08,1981Wi10

 $^{106}_{49} In_{57}$