¹⁰⁶Cd(**p**,**p**'γ) **1992Ku01**

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	D. De Frenne and A. Negret	NDS 109, 943 (2008)	1-May-2007			

E(p)=7-9 MeV. Measured: Ep', E γ , E(ce), pp γ , pp(ce). Deduced: ¹⁰⁶Cd levels, α (K)exp, J^{π} . Ge, Si(Li) detectors.

¹⁰⁶Cd Levels

E(level)	$J^{\pi \dagger}$	E(level)	$J^{\pi \dagger}$	E(level)	$J^{\pi \dagger}$	E(level)	J^{π}
0.0	0^{+}	1795.3	0^{+}	2254.0 5	$(2^+, 3^+)$	2370.6	$(2)^{+}$
632.6	2+	2104.6	4+	2305.1	4+	2378.6	3-
1493.8 <i>3</i>	4+	2143.9	0^{+}	2330.5	5+		
1716.6	2^{+}	2252.2 6	(4^{+})	2347.3			

[†] From Adopted Levels.

$\gamma(^{106}\text{Cd})$

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	$E_f \underline{J_f^{\pi}}$	Mult. [#]	Comments
225.9 3	28 4	2330.5	5+	2104.6 4+	M1+E2	Mult.: No δ given.
388.0 <i>3</i>	1.8 4	2104.6	4+	1716.6 2+	E2	U
427.2 3	33 5	2143.9	0^{+}	1716.6 2+	E2	$\alpha(K) \exp = 0.0084 \ 10$
536.2 <i>3</i>	6.5 11	2254.0	$(2^+, 3^+)$	1716.6 2+	(M1+E2)	Mult.: No δ given.
575.3 <i>3</i>	25 4	2370.6	$(2)^{+}$	1795.3 0+	E2	$\alpha(K) \exp = 0.0036 5$
610.7 <i>3</i>	34 5	2104.6	4+	1493.8 4+	M1+E2	Mult.: No δ given.
632.6 <i>3</i>	1000	632.6	2+	$0.0 \ 0^+$	E2	
653.9 <i>3</i>	30 5	2370.6	$(2)^{+}$	1716.6 2+	M1+E2	Mult.: No δ given.
758.8 <i>3</i>	9.5 15	2252.2	(4^{+})	1493.8 4+	(M1+E2)	Mult.: No δ given.
811.2 <i>3</i>	38 6	2305.1	4+	1493.8 4+	M1+E2	Mult.: No δ given.
836.8 <i>3</i>	8.3 13	2330.5	5+	1493.8 4+	M1+E2	Mult.: No δ given.
861.2 <i>3</i>	128 19	1493.8	4+	632.6 2+	E2	
1084.0 <i>3</i>	197 <i>30</i>	1716.6	2+	632.6 2+	M1+E2	Mult.: No δ given.
1162.7 <i>3</i>	164 25	1795.3	0^{+}	632.6 2+	E2	
1472.0 3	20 3	2104.6	4+	632.6 2+	E2	
1511.4 <i>3</i>	101 15	2143.9	0^{+}	632.6 2+	E2	α (K)exp=0.00040 15
1619.6 6	190 90	2252.2	(4^{+})	632.6 2+		
1621.4 4	100 50	2254.0	$(2^+, 3^+)$	632.6 2+		
1672.6 <i>3</i>	4.8 7	2305.1	4+	632.6 2+	E2	
1714.7 <i>3</i>	185 28	2347.3		632.6 2+		
1716.6 <i>3</i>	168 25	1716.6	2+	$0.0 \ 0^+$		
1738.0 <i>3</i>	90 14	2370.6	$(2)^{+}$	632.6 2+	M1+E2	Mult.: No δ given.
1746.0 <i>3</i>	121 19	2378.6	3-	632.6 2+	E1	-
2143.9		2143.9	0^{+}	$0.0 \ 0^+$	EO	
2370.6 3	6.3 10	2370.6	$(2)^{+}$	$0.0 \ 0^+$		

 † Authors quote only a single set of Ey values for (p,p'y) and (p,2ny) experiments.

 ‡ Correspond to direct level population and do not include gamma ray feeding.

[#] From $\alpha(K)$ exp normalized to $\alpha(K)$ exp=0.00300 5 [E2 theory: Bricc] and $\gamma(\theta)$ and J^{π} of Adopted Levels.

From ENSDF

 \mathbf{b}

 $^{106}_{48}\text{Cd}_{58}\text{-}2$