$^{50}{\rm Cr}(^{58}{\rm Ni,}2{\rm pn}\gamma)$ 1999De50

History

Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	S. Lalkovski, J. Timar and Z. Elekes	NDS 161, 1 (2019)	1-Apr-2019

1999De50: Facility: LNL XTU Tandem; Beam: $E({}^{58}Ni)=210$ MeV; Target: ${}^{50}Cr$; Detectors: Recoil Mass Separator (CAMEL), GASP with 40 HPGe, Si-ball ISIS; Measured: γ , γ - γ coinc.; Deduced: ${}^{105}Sn$ levels, J^{π}, band structure; Also from the same collaboration: 1997Ga01, 1995De10. 1995Sc50: Beam: $E(^{58}Ni)=250$ MeV; Measured: $E\gamma$, $I\gamma$, $\gamma\gamma$; Deduced: levels, J^{π} .

Others: 1992Sc17, 1992IsZV.

¹⁰⁵Sn Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0	$(5/2^+)$		
199.7.3	$(7/2^+)$	0.33 ns 8	T _{1/2} : from RDDS in 1994IsZX.
1194.0 3	$(9/2^+)$		
1393.8 4	$(11/2^+)$		
1848.7 <i>4</i>	$(13/2^+)$		
1915.6 6	$(13/2^+)$		
2030.7 4	$(15/2^+)$		
2167.0 6	$(15/2^+)$		
2203.5 5	$(17/2^+)$	0.38 ns 5	$T_{1/2}$: from RDDS in 1994IsZX.
3012.9 5	$(19/2^+)$		
3283.8 6	$(21/2^+)$		
3427.0 6	$(17/2^+)$		
3755.2 9	$(19/2^+)$		
3831.6 11	$(21/2^+)$		
4082.7 8	$(21/2^{+})$		
4429.6 8	$(23/2^{+})$		
4551.5 10	(23/2)		
5520.0.8	$(25/2^{+})$		
5603 3 14	(23/2)		
5874 1 12	$(27/2^{-})$		
6126.3.9	$(27/2^+)$		
6582.7 11	$(29/2^{-})$		
7039.5 [#] 11	(29/2 ⁻)		
7340.5 [#] 11	$(31/2^{-})$		
7728.5 [#] 15	(33/2 ⁻)		
8194.5 [#] 18	$(35/2^{-})$		
8680.5 [#] 21	$(37/2^{-})$		
9136.5 [#] 23	$(39/2^{-})$		
9692 [#] 3	$(41/2^{-})$		
10288 [#] 3	$(43/2^{-})$		

[†] From a least-squares fit to $E\gamma$.

[‡] Suggested from shell model and observed band structure.

[#] Band(A): Magnetic rotational (M1) band.

	50 Cr(58 Ni,2pn γ) 1999De50 (continued)							
					$\gamma(^{105}\text{Sn})$			
E_{γ}^{\dagger}	I_{γ}	E_i (level)	J_i^π	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [#]	Comments		
37	4 1	2203.5	$(17/2^+)$	2167.0 (15/2+)	(M1)			
137	+	2167.0	$(15/2^+)$	2030.7 (15/2+)				
172.8 ⁺ 3	100+	2203.5	$(17/2^+)$	$2030.7 (15/2^+)$	(M1)			
181.8 ⁺ 3	100+ 5	2030.7	$(15/2^+)$	1848.7 (13/2+)	(M1)			
200.0+ 3	100+ 5	199.7	$(7/2^+)$	$\begin{array}{c} 0 & (5/2^+) \\ 1015.6 & (12/2^+) \end{array}$				
232 271 0 [‡] 1	61 1	2107.0	(13/2) $(21/2^+)$	1913.0 (13/2) $3012.0 (19/2^+)$	(M1)	Mult : Suggested by 1995Sc50 from comparison with		
271.0 4	0.1 1	5265.6	(21/2)	3012.9 (19/2)	(1411)	the intensity of 1080 keV gamma.		
288	100	2203.5	$(17/2^+)$	1915.6 $(13/2^+)$				
346.6 <i>3</i> 388	100	4429.6 7728.5	$(23/2^{+})$ $(33/2^{-})$	$\begin{array}{c} 4082.7 & (21/2^{+}) \\ 7340.5 & (31/2^{-}) \end{array}$				
455.0 [‡] 5	17 [‡] 5	1848.7	$(13/2^+)$	1393.8 (11/2 ⁺)				
456	100	9136.5	$(39/2^{-})$	8680.5 (37/2 ⁻)				
457 466	100	7039.5 8194 5	(29/2) $(35/2^{-})$	6582.7 (29/2) 7728 5 (33/2 ⁻)				
486	100	8680.5	$(37/2^{-})$	8194.5 (35/2 ⁻)				
523		1915.6	$(13/2^+)$	1393.8 (11/2 ⁺)				
555	100	9692	$(41/2^{-})$	9136.5 $(39/2^{-})$				
590 597 3 3	100	6126 3	(43/2) $(27/2^+)$	9692 (41/2) 5529 0 (25/2 ⁺)				
$637.0^{\ddagger}4$	49 [‡] 8	2030.7	$(27/2^{+})$ $(15/2^{+})$	$1393.8 (11/2^+)$				
$654.4^{\ddagger}.4$	100^{\ddagger} 11	1848 7	$(13/2^+)$	1393.0 (11/2) 1194 0 (9/2 ⁺)				
655.5 5	100 11	4082.7	$(13/2^+)$ $(21/2^+)$	$3427.0 (17/2^+)$				
675		4429.6	$(23/2^+)$	3755.2 (19/2 ⁺)				
709	100	6582.7	$(29/2^{-})$	5874.1 (27/2 ⁻)				
7/21	100	1915.0	$(13/2^+)$ $(10/2^+)$	$1194.0 (9/2^+)$ $3012.0 (10/2^+)$				
758	100	7340.5	$(19/2^{-})$ $(31/2^{-})$	$6582.7 (29/2^{-})$				
809.3 [‡] 5	24 [‡] 10	3012.9	$(19/2^+)$	2203.5 (17/2+)				
846.0 [‡] <i>3</i>	100 [‡] 19	3012.9	$(19/2^+)$	2167.0 $(15/2^+)$				
913 982 3 [‡] 5	36‡ 10	7039.5	(29/2)	$6126.3 (27/2^{+})$ 2030 7 (15/2 ⁺)				
994.5 [‡] .5	$6^{\ddagger} 3$	1194.0	(1)/2) $(9/2^+)$	$199.7 (7/2^+)$				
$1080.3^{\ddagger} 5$	$100^{\ddagger} 20$	3283.8	$(21/2^+)$	$2203.5 (17/2^+)$	(E2)	Mult.: Suggested by 1995Sc50 from comparison with		
1099.2.3	100	5529.0	$(25/2^+)$	4429.6 (23/2+)		the intensity of 271 keV gamma.		
1193.4 [‡] 4	100 [‡] 2	1194.0	$(9/2^+)$	$0 (5/2^+)$				
1194.6 [‡] 4	100 [‡]	1393.8	$(11/2^+)$	$199.7 (7/2^+)$				
1214		7340.5	(31/2-)	6126.3 (27/2+)				
1268	100	4551.5	$(23/2^{-})$	3283.8 (21/2 ⁺)				
1323	100	5874.1	$(27/2^{-})$	4551.5 (23/2 ⁻)				
1396.0+ 5	100+	3427.0	$(17/2^+)$	$2030.7 (15/2^+)$ $4082.7 (21/2^+)$				
1448 1620	100	5529.0 5375 2	(25/2.)	$4082.7 (21/2^+)$ 3755.2 (19/2 ⁺)				
1628	100	3831.6	$(21/2^+)$	$2203.5 (17/2^+)$				
1938	100	5693.3	~ / /	3755.2 (19/2+)				

[†] From 1999De50, unless noted otherwise.
[‡] From 1995Sc50.
[#] Suggested from the fact that these transitions were not delayed on a ns scale which would be mandatory for E1 and E2 transitions.

 $^{105}_{50}{
m Sn}_{55}$

