105 Tc β^- decay 2013Jo02,1975Su02,1979Bo26

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	S. Lalkovski, J. Timar and Z. Elekes	NDS 161, 1 (2019)	1-Apr-2019

Parent: ¹⁰⁵Tc: E=0.0; $J^{\pi}=(3/2^{-})$; $T_{1/2}=7.64 \text{ min } 6$; $Q(\beta^{-})=3644 \ 35$; $\%\beta^{-}$ decay=100.0

2013Jo02: Facility: K-130 University of Jyvaaskylaa's cyclotron; Source: from ^{nat}U+p fission and IGISOL separation; Beam: E(p)=30 and 50 MeV; Target: 15 mg/cm² thick ^{nat}U; Detectors: Total absorption spectrometer, comprising two large volume cylindrical NaI(Tl) detectors; Measured: γ , β and $E\gamma$.

1975Su02: Source: 1-4 mg/cm² chemically separated 1 μ Ci ¹⁰⁵Tc from ²³⁵U(n,F γ) and ²³⁹Pu(n,F γ); Detectors: one planar Ge(Li), one co-axial Ge(Li), one plastic NE102A scintillator; Measured: γ , γ - γ (t) coinc., β - γ coinc., E γ , I γ ; Deduced: ¹⁰⁵Ru level cheme, T_{1/2}.

1979Bo26: Facility: high-flux reactor at ILL Grenoble; Target: U_3O_8 , enriched to 99.98% in ²³⁸U; Beam: thermal neutrons, flux= $5.5 \otimes 10^{14}$ cm⁻²s⁻¹; Detectors: curved crystal spectrometers GAMS 1, 2/3; Measured: E γ ; Deduced: isotopic assignment.

1975RaZL: Facility: n-generator at Dep.Phys. at the Univ.Helsinki; Source: chemically separated from U(n,f): Detectors: planar Ge(Li), three co-axial Ge(Li), X-ray Ge(Li) detector with Be window, one NaI(Tl), Pb shields to suppress cross talks between detectors; Measured: γ , γ - γ and β - γ coinc., E γ , I γ ; Deduced: γ Mult., J^{π} , level scheme, T_{1/2}; Authors suggest additional γ -lines, not presented in the present evaluation, as parts of unresolved multiplets. Some of these are rather background fluctuations.

Others: 1987Gr18, 1977Ki14, 1976KaYO, 1972Ra46, 1972Tr08, 1972TrZT, 1967Ka14, 1963Ki16.

¹⁰⁵Ru Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	3/2+		
20.58 3	5/2+	340 ns 15	$T_{1/2}$: from the slope of 143.25 γ -20.55 γ (t) coinc. in 1975Su02.
107.945 8	$5/2^+$		
159.520 0	$\frac{1}{2}$		
229.40.5	(3/2) $7/2^+$		
229.40 5	$(3/2^+ 5/2^+)$		
272.78 4	$(3/2^+, 3/2^-)$		
321.66 4	3/2-		
340 [#]	,		
441.92 10	$3/2^+, 5/2^+$		
466.37 7	3/2+		
500 [#]			
578.0 <i>3</i>	$5/2^{-}$		
631.09 24	1/2+		
643.92 <i>23</i>	(1/2 to 7/2)		
660 [#]			E(level): 670.60 4 in the Adopted Levels.
			J^{π} : $(1/2^+, 3/2^+)$ in the Adopted Levels.
756.8 3	$(3/2, 5/2)^+$		
784.50 10	$(1/2,3/2)^{-}$		
805.8 5	$1/2^+$		
824.28 18	$\frac{3}{2}$		
903 14 10	$\frac{3}{2}$		
1325 4 3	(1/2, 3/2)		
1380#	(1/=,0/=)		
1420#			
1420			
1460"			
1500"			
1540#			
1580 [#]			E(level): 1581 10 in the Adopted Levels.

Continued on next page (footnotes at end of table)

¹⁰⁵Ru Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	Comments
1620 [#] 1660 [#] 1700 [#]		J^{π} : $(3/2^+, 5/2^+)$ in the Adopted Levels. E(level): 1735.30 <i>17</i> in the Adopted Levels.
1740 [#] 1780 [#] 1832.67 <i>17</i> 1843.2 <i>3</i> 1860 [#] 1900 [#] 1940 [#] 1980 [#]	(1/2,3/2) (1/2,3/2)	J ^{<i>n</i>} : $(1/2^+, 3/2^+)$ in the Adopted Levels. J ^{<i>n</i>} : 1930 <i>10</i> in the Adopted Levels. J ^{<i>n</i>} : $(3/2^+, 5/2^+)$ in the Adopted Levels.
2020 [#] 2060 [#] 2100 [#] 2155.42 <i>10</i> 2180 [#] 2220 [#] 2260 [#] 2326.7 <i>4</i> 2340 [#]	(1/2 ⁺ to 5/2 ⁺)	E(level): 2352.8 4 in the Adopted Levels.
2403.5 4 2420# 2460# 2500# 2540# 2580# 2660# 2700# 2740# 2780# 2860# 2860# 2900# 2940# 2980# 3060# 3100# 3140# 3180# 3220#	(3/2+,5/2,7/2-)	J^{π} : (1/2 ⁺ ,3/2 ⁺) in the Adopted Levels.

¹⁰⁵Ru Levels (continued)

E(level) [†]	E(level) [†]	E(level) [†]
3300#	3420 [#]	3540 #
3340 [#]	3460 [#]	3580 [#]
3380 [#]	3500 [#]	3620 [#]

 † From a least-squares fit to Ey, unless otherwise noted.

[‡] From the Adopted Levels.

[#] Pseudo-levels, from TAGS measurements in 2013Jo02.

β^- radiations

2013Jo02 used a Q(β^-) value of 3746 6 and placed two pseudo levels at 3700 keV and 3660 keV with I β^- of 0.006 and 0.005, respectively. These levels are now above the Q(β^-) value of 2017Wa10, and thus not included here.

Beta feedings are from 2013Jo02. Values from an intensity balance at each level are given in the comments.

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments
$(2 \times 10^1 4)$	3620	0.0050	≤4.3	av E β =6.1 92
$(6 \times 10^1 4)$	3580	0.0057	4.3	av E β =16.5 95
$(1.0 \times 10^2 4)$	3540	0.0076	4.9	av E β =27.4 99
$(1.4 \times 10^2 4)$	3500	0.0113	5.1	av E β =39 11
$(1.8 \times 10^2 4)$	3460	0.0174	5.3	av $E\beta=50~11$
$(2.2 \times 10^2 4)$	3420	0.0268	5.3	av E β =63 11
$(2.6 \times 10^2 \ 4)$	3380	0.0402	5.4	av E β =75 12
$(3.0 \times 10^2 \ 4)$	3340	0.0586	5.4	av Eβ=88 12
$(3.4 \times 10^2 4)$	3300	0.0281	5.9	av E β =101 12
$(3.8 \times 10^2 \ 4)$	3260	0.1086	5.5	av Eβ=115 <i>12</i>
$(4.2 \times 10^2 \ 4)$	3220	0.1324	5.6	av E β =129 <i>13</i>
$(4.6 \times 10^2 \ 4)$	3180	0.1493	5.6	av Eβ=143 <i>13</i>
$(5.0 \times 10^2 4)$	3140	0.1652	5.7	av E β =157 13
$(5.4 \times 10^2 4)$	3100	0.1958	5.8	av E β =172 13
$(5.8 \times 10^2 4)$	3060	0.2697	5.7	av E β =186 14
$(6.6 \times 10^2 4)$	2980	0.4363	5.7	av E β =217 14
$(7.0 \times 10^2 4)$	2940	1.2824	5.3	av Eβ=232 14
$(7.4 \times 10^2 4)$	2900	1.7774	5.3	av E β =248 14
$(7.8 \times 10^2 4)$	2860	1.9363	5.3	av E β =264 14
$(8.2 \times 10^2 4)$	2820	1.7316	5.5	av E β =279 14
$(8.6 \times 10^2 4)$	2780	1.4357	5.6	av E β =296 15
$(9.0 \times 10^2 4)$	2740	1.2672	5.7	av E β =312 15
$(9.4 \times 10^2 4)$	2700	1.2760	5.8	av E β =328 15
$(9.8 \times 10^2 4)$	2660	1.4413	5.8	av E β =345 15
$(1.02 \times 10^3 4)$	2620	1.6839	5.8	av E β =361 15
$(1.06 \times 10^{3} 4)$	2580	1.9380	5.8	av E β =378 15
$(1.10 \times 10^3 4)$	2540	2.0856	5.8	av E β =395 15
$(1.14 \times 10^{3} 4)$	2500	2.1649	5.9	av E β =412 15
$(1.18 \times 10^{3} 4)$	2460	2.2587	5.9	av E β =429 15
$(1.22 \times 10^{3} 4)$	2420	2.4394	5.9	av E β =446 15
$(1.24 \times 10^{3} 4)$	2403.5	2.6929	5.9	av E β =453 16
(1.20, 1.03, 5	00.40	0.0116	6.0	$l\beta^-$: 2.1.4 from $l(\gamma+ce)$ intensity balance to the level.
$(1.30 \times 10^{-5} 4)$	2340	2.8116	6.0	av E β =481 16

Continued on next page (footnotes at end of table)

β^{-} radiations (continued)

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments
$(1.32 \times 10^3 4)$	2326.7	2.7775	6.0	av E β =486 16
				$I\beta^-$: 6.16 10 from I(γ +ce) balance.
$(1.38 \times 10^3 4)$	2260	2.8070	6.1	av E β =516 16
$(1.42 \times 10^3 4)$	2220	3.1258	6.1	
$(1.46 \times 10^3 4)$	2180	3.4730	6.1	av E β =551 16
$(1.49 \times 10^3 4)$	2155.42	3.1681	6.2	av E β =562 16
				I β^- : 3.3 5 from I(γ +ce) intensity balance to the level.
$(1.54 \times 10^3 4)$	2100	2.2524	6.4	av E β =586 16
$(1.58 \times 10^3 \ 4)$	2060	1.4157	6.6	av E β =604 16
$(1.62 \times 10^3 \ 4)$	2020	0.9572	6.8	av E β =622 16
$(1.66 \times 10^3 \ 4)$	1980	0.8251	6.9	av E β =640 16
$(1.70 \times 10^3 4)$	1940	1.1285	6.8	av E β =658 16
$(1.74 \times 10^3 4)$	1900	2.5773	6.5	av E β =676 16
$(1.78 \times 10^3 4)$	1860	5.9110	6.2	av E β =694 16
$(1.80 \times 10^3 4)$	1843.2	6.8953	6.2	av E β =701 16
				I β^- : unresolved doublet in 2013Jo02; 1.1 from I(γ +ce) intensity balance to the level.
≈1800	1832.67	6.8953	6.2	av $E\beta = 706 \ 16$
				$1\beta^{-1}$: unresolved doublet in 2013Jo02; 12.2 14 from $1(\gamma + ce)$ intensity balance to the
(1.0(103	1700	2 5052	65	level.
$(1.86 \times 10^{3} 4)$	1780	3.5053	0.5	$aV E\beta = 730 \ 10$
$(1.90 \times 10^3 4)$	1740	1.2078	7.0	$aV E\beta = 748.10$
$(1.94 \times 10^3 4)$	1/00	0.4/30	1.5	av $E\beta = 705 I f$
$(1.98 \times 10^3 4)$	1660	0.2486	7.8	av $E\beta = /85 10$
$(2.02 \times 10^3 4)$	1620	0.1694	8.0	av $E\beta = 803.16$
$(2.06 \times 10^3 4)$	1580	0.1491	8.1	av $E\beta = 821.16$
$(2.10 \times 10^3 4)$	1540	0.1685	8.0	av $E\beta = 840.76$
$(2.14 \times 10^{3} 4)$	1500	0.2216	8.0	$av = B\beta = 858 T/$
$(2.18 \times 10^{3} 4)$	1460	0.3064	7.8	av $B_{\beta} = 8/6 1/2$
$(2.22 \times 10^3 4)$	1420	0.4/42	1.1	av $E\beta = 895 17$
$(2.26 \times 10^3 4)$	1380	0.8642	1.5	av $E\beta = 913.17$
$(2.32 \times 10^{3} 4)$	1325.4			$I\beta$: 7.36 15 from $I(\gamma + ce)$ intensity balance to the level.
$(2.74 \times 10^{3} 4)$	903.14			$I\beta$: 7.48 / from I(γ +ce) intensity balance to the level.
$(2.76 \times 10^{3} 4)$	886.60			1β : 7.11 / from $I(\gamma + ce)$ intensity balance to the level.
(2.82×10^{-4})	824.28			$I\beta$: 7.9 S from $I(\gamma+ce)$ intensity balance to the level.
(2.84×10^{-4})	805.8	4 2247	0 = 14	$\mu = 7.80 \text{ 8 from } (\gamma + ce)$ intensity balance to the level.
(2.80×10^{-4})	/84.50	4.3247	8.5***	$AV = E\beta = 1189 I/$ $IR^{-1} = 2.5 R$ from $I(a + aa)$ intensity belongs to the level
$(2.80 \times 10^3 \text{ A})$	756.8	1 7171	76	P 2.5.8 from $I(\gamma+ce)$ intensity balance to the level.
(2.09×10 4)	750.0	1./1/1	7.0	$I\beta^{-120+17}$ $I\beta^{-2} \cdot 34.6$ from $I(\gamma + ce)$ intensity balance to the level
$(2.98 \times 10^3 4)$	660	0 9339	74	
$(2.90\times10^{3} 4)$	643.92	0.7557	<i>,</i>	$I\beta^{-}$: 7.26.8 from $I(\gamma + ce)$ intensity balance to the level
$(3.07 \times 10^3 4)$	578.0			$I\beta^{-1}$, 7.41.7 from $I(\gamma + ce)$ intensity balance to the level
$(3.14 \times 10^3 4)$	500	0.5775	8.2	av E β =1325 17
$(3.18 \times 10^3 4)$	466.37	010770	0.2	$I\beta^{-2}$; 7.44 11 from $I(\gamma + ce)$ intensity balance to the level.
$(3.20 \times 10^3 4)$	441.92			$I\beta^-$: 7.57 13 from $I(\gamma+ce)$ intensity balance to the level.
$(3.30 \times 10^3 4)$	340	5.1187	7.4	av E β =1401 17
$(3.32 \times 10^3 4)$	321.66			$I\beta^-: 20$ 13 from $I(\gamma + ce)$ intensity balance to the level.
$(3.37 \times 10^3 4)$	272.78	0.5103	8.4	av $E\beta = 1433 \ I7$
(0.00.000 0)				$I\beta^-: 6.3 \ I3 \ \text{from I}(\gamma + \text{ce}) \text{ intensity balance to the level.}$
$(3.40 \times 10^3 4)$	246.387			$I\beta^-$: <12 from I(γ +ce) intensity balance to the level.
$(3.41 \times 10^3 4)$	229.40			$I\beta^{-}$: 1.6 3 from I(γ +ce) intensity balance to the level.
$(3.48 \times 10^3 4)$	163.830			$I\beta^{-}$: 8.4 17 from I(γ +ce) intensity balance to the level.
$(3.48 \times 10^3 4)$	159.526			$I\beta^-$: 7.4 20 from I(γ +ce) intensity balance to the level.
$(3.54 \times 10^3 4)$	107.945			$I\beta^-$: 2.6 23 from I(γ +ce) intensity balance to the level.
. ,				Continued on next page (footnotes at end of table)

β^- radiations (continued)

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments
$(3.62 \times 10^3 \ 4)$ $3.80 \times 10^3 \ 20$	20.58 0.0	≤9	≥7.3	av E β =1562 17 I β^- : 26.4 from I(γ +ce) intensity balance to the level.

[†] Absolute intensity per 100 decays.

$\gamma(^{105}\text{Ru})$

I γ normalization: from (100-I β_{gs})/I(γ +ce)_{gs}, where I β_{gs} =9% is from TAGS measurments in 2013Jo02 and I(γ +ce)_{g.s.}=4300 400 is from I(γ +ce) balance to the g.s.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger @}$	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	δ	α &	Comments
20.55 5	10 5	20.58	5/2+	0.0	3/2+	M1+E2	0.065 35	5.7 8	$\begin{aligned} &\alpha(L)=5.2 \ 9; \ \alpha(M)=0.96 \ 16; \ \alpha(N+)=0.153 \ 22 \\ &\alpha(N)=0.148 \ 22; \ \alpha(O)=0.00499 \ 8 \\ &\alpha(N)=0.33 \ 24; \ \alpha(O)=0.00508 \ 14 \\ &\delta, \alpha(\exp): \ \text{from the adopted gammas; Others: } 6.7 \ 12 \\ &(1978Gu14) \ \text{and} \ \alpha\approx 24 \ (1974Hr01). \end{aligned}$
51.2 [‡] 4	0.5 2	159.526	1/2+	107.945	5/2+	[E2]		14.2 5	$\alpha(K)=9.08\ 25;\ \alpha(L)=4.23\ 17;\ \alpha(M)=0.80\ 4;\ \alpha(N+)=0.118\ 5$ $\alpha(N)=0\ 117\ 5;\ \alpha(Q)=0\ 00120\ 4$
55.74 5	5.69	163.830	(5/2+)	107.945	5/2+	[M1]		1.641	$\alpha(K)=1.429\ 21;\ \alpha(L)=0.1745\ 25;\ \alpha(M)=0.0321\ 5;\alpha(N+)=0.00544\ 8\alpha(N)=0.00518\ 8;\ \alpha(O)=0.000265\ 4$
75.30 5	14 3	321.66	3/2-	246.387	(3/2+,5/2+)	[E1+M2]		5 5	$\begin{array}{l} \alpha(\mathrm{N}) = 0.04 \ 4; \ \alpha(\mathrm{O}) = 0.0006 \ 4 \\ \alpha(\mathrm{K}) = 4 \ 4; \ \alpha(\mathrm{L}) = 0.7 \ 7; \ \alpha(\mathrm{M}) = 0.13 \ 13; \\ \alpha(\mathrm{N}+) = 0.022 \ 21 \\ \alpha(\mathrm{N}) = 0.021 \ 21; \ \alpha(\mathrm{O}) = 0.0009 \ 9 \end{array}$
82.546 [#] 14	2.8 9 27 5	246.387	(3/2+,5/2+)	163.830	(5/2+)	M1+E2	0.07 2	0.542 10	$\alpha(K)=0.471 \ 9; \ \alpha(L)=0.0584 \ 17; \ \alpha(M)=0.0108 \ 3; \ \alpha(N+)=0.00182 \ 5$
87.40 5	<1	107.945	5/2+	20.58	5/2+	[M1+E2]		1.3 9	$\alpha(N)=0.001/3 5; \ \alpha(O)=8.70\times10^{-5} 14$ $\alpha(K)=1.0 7; \ \alpha(L)=0.22 18; \ \alpha(M)=0.04 4;$ $\alpha(N+)=0.006 5; \ \alpha(O)=0.00015 8$
107.945 [#] 8	90 9	107.945	5/2+	0.0	3/2+	M1+E2	-0.094 28	0.256 6	$\alpha(N)=0.0005, \alpha(O)=0.000158$ $\alpha(K)=0.2235; \alpha(L)=0.02759; \alpha(M)=0.0050717;$ $\alpha(N+)=0.000863$ $\alpha(N)=0.000823; \alpha(O)=4.11\times10^{-5}8$ $\alpha(N)=0.002710; \alpha(O)=8554$
113.36 5	5.69	272.78	3/2+	159.526	1/2+	[M1+E2]		0.5 3	$\alpha(N)=0.0021$ 17; $\alpha(O)=8.E-5$ 4 $\alpha(K)=0.43$ 24; $\alpha(L)=0.08$ 6; $\alpha(M)=0.014$ 11; $\alpha(N+)=0.0023$ 16 $\alpha(N)=0.0023$ 16 $\alpha(N)=0.0023$ 16
121.45 5	0.9 4	229.40	7/2+	107.945	5/2+	[M1+E2]		0.41 24	$\alpha(N)=0.0022$ 10, $\alpha(O)=7.E=5$ 4 $\alpha(K)=0.34$ 19; $\alpha(L)=0.06$ 4; $\alpha(M)=0.011$ 8; $\alpha(N+)=0.0017$ 12 $\alpha(N)=0.0017$ 12; $\alpha(O)=5.E=5$ 3
^x 131.7 [‡] 2 138.446 [#] 7	3.0 <i>10</i> 27 <i>3</i>	246.387	(3/2+,5/2+)	107.945	5/2+	M1+E2	-0.55 3	0.190 6	α(K)=0.162 5; α(L)=0.0236 10; α(M)=0.00438 18; α(N+)=0.00071 3 α(N)=0.00069 3; α(O)=2.75×10-5 8 Eγ: underestimated uncertainty as no final level within 0.078 keV.

From ENSDF

				¹⁰⁵ Tc	β^{-} deca	y 2013Jo	02,1975Su02,197	79Bo26 (contin	nued)		
γ ⁽¹⁰⁵ Ru) (continued)											
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger @}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^π	Mult.	δ	α &	Comments		
143.26 [#] 7	100	163.830	(5/2 ⁺)	20.58	5/2+	M1+E2	0.25 6	0.129 8	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.112 \ 6; \ \alpha(\mathrm{L}) = 0.0143 \ 12; \ \alpha(\mathrm{M}) = 0.00263 \ 22; \\ \alpha(\mathrm{N}+) = 0.00044 \ 4 \\ \alpha(\mathrm{N}) = 0.00042 \ 4; \ \alpha(\mathrm{O}) = 2.01 \times 10^{-5} \ 9 \end{array} $		
157.82 5	16.8 <i>19</i>	321.66	3/2-	163.830	(5/2+)	[E1+M2]			α (N)=0.0009 6; α (O)=3.2×10 ⁻⁵ 14 α (K)=0.28 25; α (L)=0.04 4; α (M)=0.008 7; α (N+)=0.0013 12 α (N)=0.0012 12; α (O)=6.E–5 6		
159.528 [#] 6	65 7	159.526	1/2+	0.0	3/2+	[M1+E2]		0.16 8	$\alpha(K) = 0.14 \ 7; \ \alpha(L) = 0.021 \ 12; \ \alpha(M) = 0.0039 \ 23; \alpha(N+) = 0.0006 \ 4$		
162.3 5	3.7 9	321.66	3/2-	159.526	1/2+	[E1+M2]		0.3 3	$\begin{array}{l} \alpha(\mathrm{N}) = 0.0006 \ 4; \ \alpha(\mathrm{O}) = 2.3 \times 10^{-3} \ 9 \\ \alpha(\mathrm{K}) = 0.25 \ 2.3; \ \alpha(\mathrm{L}) = 0.04 \ 4; \ \alpha(\mathrm{M}) = 0.007 \ 7; \\ \alpha(\mathrm{N}+) = 0.0012 \ 11 \end{array}$		
164.8 5	1.9 4	272.78	3/2+	107.945	5/2+	[M1+E2]		0.15 7	$\begin{array}{c} \alpha(N)=0.0011 \ 10; \ \alpha(O)=5.E-5 \ 5\\ \alpha(K)=0.12 \ 6; \ \alpha(L)=0.019 \ 11; \ \alpha(M)=0.0035 \ 20; \\ \alpha(N+)=0.0006 \ 3 \end{array}$		
169.2 5	3.8 9	441.92	3/2+,5/2+	272.78	3/2+	M1+E2	1.0 +8-4	0.13 4	$\alpha(N)=0.0005 \ 3; \ \alpha(O)=2.1\times10^{-5} \ 8 \\ \alpha(K)=0.11 \ 3; \ \alpha(L)=0.017 \ 5; \ \alpha(M)=0.0031 \ 10; \\ \alpha(N+)=0.00051 \ 15 \\ \alpha(N)=0.00049 \ 14; \ \alpha(O)=1.9\times10^{-5} \ 4$		
193.3 5	1.9 4	824.28	3/2+	631.09	1/2+	[M1+E2]		0.09 4	$ \begin{aligned} \alpha(N) = 0.0005 \ 3; \ \alpha(O) = 1.9 \times 10^{-5} \ 8 \\ \alpha(K) = 0.07 \ 3; \ \alpha(L) = 0.010 \ 6; \ \alpha(M) = 0.0019 \ 10; \\ \alpha(N+) = 0.00032 \ 15 \end{aligned} $		
208.9 5	8.4 9	229.40	7/2+	20.58	5/2+	[M1+E2]		0.07 3	$ \begin{aligned} &\alpha(\text{N}) = 0.00030 \ 15; \ \alpha(\text{O}) = 1.2 \times 10^{-5} \ 5 \\ &\alpha(\text{K}) = 0.058 \ 22; \ \alpha(\text{L}) = 0.008 \ 4; \ \alpha(\text{M}) = 0.0015 \ 7; \\ &\alpha(\text{N}+) = 0.00024 \ 11 \end{aligned} $		
213.6 5	8.4 9	321.66	3/2-	107.945	5/2+	E1		0.01579 25	$\begin{array}{l} \alpha(\mathrm{N}) = 0.00023 \ 11; \ \alpha(\mathrm{O}) = 1.0 \times 10^{-5} \ 3\\ \alpha(\mathrm{K}) = 0.01385 \ 22; \ \alpha(\mathrm{L}) = 0.001600 \ 25; \\ \alpha(\mathrm{M}) = 0.000292 \ 5; \ \alpha(\mathrm{N}+) = 4.92 \times 10^{-5} \ 8 \end{array}$		
225.6 1	18.7 <i>19</i>	246.387	(3/2+,5/2+)	20.58	5/2+	M1(+E2)	0.04 32	0.034 5	$\alpha(N)=4.68\times10^{-5} 8; \alpha(O)=2.33\times10^{-6} 4$ $\alpha(K)=0.030 4; \alpha(L)=0.0035 6; \alpha(M)=0.00065 11;$ $\alpha(N+)=0.000111 18$		
229.4 5	1.9 9	229.40	7/2+	0.0	3/2+	[E2]		0.0672 11	α (N)=0.000105 17; α (O)=5.5×10 ⁻⁶ 5 α (K)=0.0573 10; α (L)=0.00820 14; α (M)=0.001515 25; α (N+)=0.000246 4		
246.2 <i>5</i> 252.0 <i>1</i>	3.8 9 37 4	246.387 272.78	(3/2 ⁺ ,5/2 ⁺) 3/2 ⁺	0.0 20.58	3/2+ 5/2+	M1(+E2)	11 +44-4	0.0484 8	α (N)=0.000237 4; α (O)=9.35×10 ⁻⁶ 15 α (K)=0.0413 7; α (L)=0.00577 9; α (M)=0.001065 17; α (N+)=0.000174 3		
272.6 1	22 3	272.78	3/2+	0.0	3/2+	M1+E2	0.29 +11-7	0.0222 11	$\begin{aligned} &\alpha(N) = 0.000167 \ 3; \ \alpha(O) = 6.82 \times 10^{-6} \ 11 \\ &\alpha(N) = 0.00012 \ 5; \ \alpha(O) = 5.5 \times 10^{-6} \ 14 \\ &\alpha(K) = 0.0193 \ 9; \ \alpha(L) = 0.00232 \ 14; \ \alpha(M) = 0.00043 \ 3; \\ &\alpha(N+) = 7.2 \times 10^{-5} \ 4 \end{aligned}$		

7

 $^{105}_{44}$ Ru₆₁-7

L

				1	05 Tc β^- decay	2013Jo0	2,1975Su02,1979	Bo26 (continu	ed)
						γ (¹⁰⁵ R	u) (continued)		
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger @}$	E _i (level)	${ m J}^{\pi}_i$	E_f	J_f^π	Mult.	δ	α &	Comments
									$\alpha(N)=6.9\times10^{-5}$ 4; $\alpha(O)=3.51\times10^{-6}$ 13 $\alpha(N)=0.00010$ 4; $\alpha(O)=4.3\times10^{-6}$ 10
x280.2 1 282.7 5 301.0 5 307.0 5	6.5 <i>10</i> 1.9 <i>5</i> 7.5 <i>10</i> 6.5 <i>18</i>	441.92 321.66 466.37	3/2 ⁺ ,5/2 ⁺ 3/2 ⁻ 3/2 ⁺	159.526 20.58 159.526	$5 \frac{1/2^{+}}{5/2^{+}}$ $5 \frac{1}{2^{+}}$	M1+E2		0.020 5	$\alpha(K)=0.017 \ 4; \ \alpha(L)=0.0022 \ 7; \ \alpha(M)=0.00041 \ 12; \ \alpha(N+)=6.8\times10^{-5} \ 19 \ \alpha(N)=6.5\times10^{-5} \ 18: \ \alpha(Q)=3.0\times10^{-6} \ 6$
314.7 5 321.5 <i>1</i>	4.7 20 71 10	756.8 321.66	$(3/2,5/2)^+$ $3/2^-$ (1/2 to 7/2)	441.92 0.0 221.66	$3/2^+, 5/2^+$ $3/2^+$ $3/2^-$				<i>a</i> (11)-0.5×10 10, <i>a</i> (0)-5.0×10 0
322.5 <i>5</i> 333.9 <i>5</i>	4.7 25	441.92	(1/2 to 7/2) 3/2 ⁺ ,5/2 ⁺	107.945	5/2 5 5/2 ⁺	M1+E2	-0.62 +4-7	0.0143 4	$\alpha(K)=0.0124 \ 3; \ \alpha(L)=0.00152 \ 5; \ \alpha(M)=0.000278 \ 9; \ \alpha(N+)=4.69\times10^{-5} \ 13 \ \alpha(N)=4.47\times10^{-5} \ 13; \ \alpha(O)=2.21\times10^{-6} \ 5 \ \alpha(N)=5 \ 0\times10^{-5} \ 12; \ \alpha(O)=2.4\times10^{-6} \ 4$
358.3 1	16 <i>3</i>	466.37	3/2+	107.945	5 5/2+	M1+E2		0.0127 23	$\begin{array}{l} \alpha(N) = 5.0 \times 10^{-12}, \ \alpha(O) = 2.4 \times 10^{-2}, \\ \alpha(N) = 0.0111 \ 19; \ \alpha(L) = 0.0014 \ 3; \ \alpha(M) = 0.00025 \ 6; \\ \alpha(N+) = 4.2 \times 10^{-5} \ 9 \\ \alpha(N+.$
358.4 5	3.7 15	631.09	1/2+	272.78	3/2+	[M1+E2]		0.0127 23	$\begin{array}{l} \alpha(N)=4.0\times10^{-9} \ 9; \ \alpha(O)=1.9\times10^{-6} \ 3\\ \alpha(K)=0.0110 \ 19; \ \alpha(L)=0.0014 \ 3; \ \alpha(M)=0.00025 \ 6; \\ \alpha(N+)=4.2\times10^{-5} \ 9\\ (N) \ 4.0\times10^{-5} \ 9 \ (O) \ 1.0\times10^{-6} \ 2\\ (N) \ 4.0\times10^{-5} \ 9 \ (O) \ 1.0\times10^{-6} \ 2\\ (N) \ 4.0\times10^{-5} \ 9\\ (N) \ 4.0\times10^{-5} \ 9$
397.6 5 ^x 407.4 5	1.8 9 1.8 9	643.92	(1/2 to 7/2)	246.387	(3/2 ⁺ ,5/2 ⁺)				$\alpha(N) = 4.0 \times 10^{-9}$ 9; $\alpha(O) = 1.9 \times 10^{-9}$ 3
418.7 5	2.8 10	578.0	5/2-	159.526	5 1/2+	[M2]		0.0257	$\begin{aligned} &\alpha(\text{K}) = 0.0223 \ 4; \ \alpha(\text{L}) = 0.00281 \ 4; \ \alpha(\text{M}) = 0.000520 \\ & 8; \ \alpha(\text{N}+) = 8.82 \times 10^{-5} \ 13 \\ & \alpha(\text{N}) = 8.39 \times 10^{-5} \ 13; \ \alpha(\text{O}) = 4.31 \times 10^{-6} \ 7 \end{aligned}$
441.9 <i>1</i> 445.9 <i>1</i>	11.2 20 10.3 20	441.92 466.37	3/2 ⁺ ,5/2 ⁺ 3/2 ⁺	0.0 20.58	3/2+ 5/2+	[M1+E2]		0.0068 7	α =0.0068 7; α (K)=0.0060 6; α (L)=0.00072 10; α (M)=0.000132 19; α (N+)=2.2×10 ⁻⁵ 3
462.8 <i>1</i>	28 <i>3</i>	784.50	(1/2,3/2) ⁻	321.66	3/2-	M1+E2	0.33 +12-7	0.00571 12	$\alpha(N)=2.1\times10^{-5} 3; \ \alpha(O)=1.06\times10^{-6} 8$ $\alpha=0.00571 \ 12; \ \alpha(K)=0.00500 \ 10; \ \alpha(L)=0.000584$ $14; \ \alpha(M)=0.000107 \ 3; \ \alpha(N+)=1.82\times10^{-5} 4$ $\alpha(N)=1.73\times10^{-5} 4; \ \alpha(O)=9.09\times10^{-7} \ 15$
466.3 5	9.5 10	466.37	3/2+	0.0	3/2+	[M1+E2]		0.0060 6	$\begin{array}{l} \alpha(1) = 1.75 \times 10^{-4}, \ \alpha(0) = 2.00 \times 10^{-1} & 15^{-6} \\ \alpha = 0.0060 & 6; \ \alpha(K) = 0.0053 & 5; \ \alpha(L) = 0.00063 & 8; \\ \alpha(M) = 0.000116 & 15; \ \alpha(N+) = 1.96 \times 10^{-5} & 22 \\ \alpha(N) = 1.87 \times 10^{-5} & 22; \ \alpha(0) = 0.410^{-7} & 6 \end{array}$
469.9 5	2.8 9	578.0	5/2-	107.945	5 5/2+	[E1+M2]		0.010 9	$\alpha(\Lambda) = 1.07 \times 10^{-10} 22$, $\alpha(O) = 2.4 \times 10^{-10} 0$ $\alpha(K) = 0.009$ 7; $\alpha(L) = 0.0011$ 9; $\alpha(M) = 0.00020$ 17; $\alpha(N+) = 3.E - 5.3$ $\alpha(N) = 2 E - 5.3$; $\alpha(O) = 1.7 \times 10^{-6}$ 14
471.7 5	2.0 10	631.09	1/2+	159.526	5 1/2+	[M1+E2]		0.0058 5	$\begin{array}{l} \alpha(n) = 5.E - 5.5; \ \alpha(O) = 1.7 \times 10^{-5} \ 14 \\ \alpha = 0.0058 \ 5; \ \alpha(K) = 0.0051 \ 5; \ \alpha(L) = 0.00061 \ 8; \\ \alpha(M) = 0.000113 \ 14; \ \alpha(N+) = 1.90 \times 10^{-5} \ 21 \\ \alpha(N) = 1.81 \times 10^{-5} \ 20; \ \alpha(O) = 9.1 \times 10^{-7} \ 6 \end{array}$

 ∞

From ENSDF

¹⁰⁵₄₄Ru₆₁-8

$\gamma(^{105}\text{Ru})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult.	δ	α &	Comments
480.1 5 484.0 5 ×490.6 1	9.5 10 2.8 5 15 0 18	643.92 756.8	(1/2 to 7/2) (3/2,5/2) ⁺	163.830 272.78	(5/2 ⁺) 3/2 ⁺				
535.8 5	<1 <1	643.92	(1/2 to 7/2)	107.945	5/2+				
538.5 [‡] 5	21	784.50	$(1/2,3/2)^{-}$	246.387	$(3/2^+, 5/2^+)$				
565.1 5	1.8 10 8.4 10	1323.4 886.60	(1/2,5/2) 3/2 ⁺	321.66	(1/2,3/2) 3/2 ⁻	[E1+M2]		0.006 5	α =0.006 5; α (K)=0.005 4; α (L)=0.0006 5; α (M)=0.00012 10; α (N+)=2.0×10 ⁻⁵ 16 α (N)=1.0×10 ⁻⁵ 15; α (O)=1.0×10 ⁻⁶ 8
577.9 5	15.0 <i>18</i>	578.0	5/2-	0.0	3/2+	[E1+M2]		0.006 5	$\begin{array}{l} \alpha(N)=1.9\times10^{-1} I_{3}, \alpha(O)=1.0\times10^{-3} I_{3} \\ \alpha=0.006 \ 5; \ \alpha(K)=0.005 \ 4; \ \alpha(L)=0.0006 \ 5; \ \alpha(M)=0.00011 \\ g; \ \alpha(N+)=1.9\times10^{-5} \ 15 \\ \alpha(D)=0.5 \ 16 \ 16 \ 16 \ 16 \ 16 \ 16 \ 16 \ 1$
631.0 5	1.5 5	631.09	1/2+	0.0	3/2+	[M1+E2]		0.00273 6	$\alpha(N)=1.8 \times 10^{-5} \ 14^{\circ} \ \alpha(O)=9.E^{-7} \ 8^{\circ}$ $\alpha=0.00273 \ 6^{\circ} \ \alpha(K)=0.00239 \ 5^{\circ} \ \alpha(L)=0.000281 \ 11^{\circ};$ $\alpha(M)=5.14 \times 10^{-5} \ 20^{\circ} \ \alpha(N+)=8.7 \times 10^{-6} \ 3^{\circ}$ $\alpha(N)=8.3 \times 10^{-6} \ 3^{\circ}; \ \alpha(O)=4.28 \times 10^{-7} \ 7^{\circ}$ $E_{\gamma}:$ Relative intensities of 358, 472 and 631 γ 's deexciting the 631-keV level are not in good agreement with those measured in (n, γ) work: I(358 γ): I(472 γ); I(631 γ)= 1.8 12: 1.0: 0.75 45 here, 2.4 16: 1.0: 6.6 20 in (n, γ) work Values from (n, γ) adouted
640.2 1	16.8 <i>15</i>	886.60	3/2+	246.387	(3/2+,5/2+)	M1+E2	0.20 2	0.00260 4	$\alpha = 0.00260 \ 4; \ \alpha(\text{K}) = 0.00228 \ 4; \ \alpha(\text{L}) = 0.000262 \ 4; \alpha(\text{M}) = 4.81 \times 10^{-5} \ 7; \ \alpha(\text{N}+) = 8.20 \times 10^{-6} \ 12 \alpha(\text{N}) = 7.79 \times 10^{-6} \ 11; \ \alpha(\text{O}) = 4.15 \times 10^{-7} \ 6$
644.0 5	4.79	643.92	(1/2 to 7/2)	0.0	$3/2^+$	[M1 + E2]		0.00257.5	$\alpha = 0.00257.5; \alpha(K) = 0.00225.4; \alpha(L) = 0.000264.0;$
040.5 5	1.59	805.8	1/2	159.520	1/2	[1011+122]		0.00237 3	$\alpha(M) = 4.84 \times 10^{-5} \ 17; \ \alpha(N+) = 8.20 \times 10^{-6} \ 23$ $\alpha(N) = 7.80 \times 10^{-6} \ 23; \ \alpha(O) = 4.03 \times 10^{-7} \ 7$
648.7 5	4.7 9	756.8	$(3/2,5/2)^+$	107.945	5/2+				
657.0 5 664.6 5	<1 2.7 10	903.14 824.28	3/2 ⁺ ,5/2 ⁺ 3/2 ⁺	246.387 159.526	(3/2 ⁺ ,5/2 ⁺) 1/2 ⁺	[M1+E2]		0.00240 4	$ \begin{array}{l} \alpha = 0.00240 \ 4; \ \alpha(\mathrm{K}) = 0.00210 \ 3; \ \alpha(\mathrm{L}) = 0.000246 \ 7; \\ \alpha(\mathrm{M}) = 4.50 \times 10^{-5} \ 13; \ \alpha(\mathrm{N}+) = 7.64 \times 10^{-6} \ 18 \\ \alpha(\mathrm{N}) = 7.27 \times 10^{-6} \ 18; \ \alpha(\mathrm{O}) = 3.76 \times 10^{-7} \ 8 \end{array} $
^x 713.8 5 716.6 5	3.6 <i>18</i> 3.6 <i>20</i>	824.28	3/2+	107.945	5/2+	[M1+E2]		0.00199 4	α =0.00199 4; α (K)=0.00175 3; α (L)=0.000203 4; α (M)=3.73×10 ⁻⁵ 7; α (N+)=6.33×10 ⁻⁶ 10 α (N)=6.02×10 ⁻⁶ 10; α (O)=3.13×10 ⁻⁷ 9
722.8 <i>5</i> 739.3 <i>1</i> 757 0 5	<1 10.3 <i>10</i> 7.5 <i>10</i>	886.60 903.14 756 8	$3/2^+$ $3/2^+, 5/2^+$ $(3/2, 5/2)^+$	$163.830 \\ 163.830 \\ 0.0$	$(5/2^+)$ $(5/2^+)$ $3/2^+$				
824.3 5	7.5 10	824.28	3/2+	0.0	3/2+	[M1+E2]		0.00143 4	$ \begin{array}{l} \alpha = 0.00143 \ 4; \ \alpha(\mathrm{K}) = 0.00125 \ 4; \ \alpha(\mathrm{L}) = 0.000145 \ 3; \\ \alpha(\mathrm{M}) = 2.65 \times 10^{-5} \ 5; \ \alpha(\mathrm{N} +) = 4.51 \times 10^{-6} \ 10 \\ \alpha(\mathrm{N}) = 4.28 \times 10^{-6} \ 9; \ \alpha(\mathrm{O}) = 2.25 \times 10^{-7} \ 9 \end{array} $

9

From ENSDF

$\gamma(^{105}\text{Ru})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger @}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	
883.5 5	<1	1325.4	(1/2,3/2)	441.92	$3/2^+.5/2^+$	
^x 896.0 5	10 5				- 1)-1	
1003.8 5	4.5 20	1325.4	(1/2,3/2)	321.66	3/2-	I _{γ} : relative intensities of 541 and 10 consistent: I(541 γ)/I(1004 γ)=1.2
1008.4 1	11.2 10	1832.67	(1/2, 3/2)	824.28	$3/2^{+}$	
1047.9 5	3.7 19	1832.67	(1/2, 3/2)	784.50	$(1/2,3/2)^{-}$	
1058.5 5	5.6 20	1843.2	(1/2, 3/2)	784.50	$(1/2,3/2)^{-}$	
1201.6 5	7.5 9	1832.67	(1/2, 3/2)	631.09	$1/2^{+}$	
1366.3 5	20.6 20	1832.67	(1/2, 3/2)	466.37	$3/2^{+}$	
1370.8 5	4.5 10	2155.42		784.50	$(1/2, 3/2)^{-}$	
1510.6 5	15.0 15	1832.67	(1/2, 3/2)	321.66	3/2-	
1560.1 5	13.0 15	1832.67	(1/2, 3/2)	272.78	$3/2^{+}$	
1570.5 5	<1	1843.2	(1/2, 3/2)	272.78	$3/2^{+}$	
1673.3 5	<1	1832.67	(1/2, 3/2)	159.526	$1/2^{+}$	
1683.9 5	<1	1843.2	(1/2, 3/2)	159.526	$1/2^{+}$	
1882.7 5	1.0 2	2155.42		272.78	$3/2^{+}$	
2053.9 5	9.5 20	2326.7	$(1/2^+ \text{ to } 5/2^+)$	272.78	$3/2^{+}$	
2082.0 5	9.5 20	2403.5	$(3/2^+, 5/2, 7/2^-)$	321.66	3/2-	
2155.4 <i>I</i>	14.0 15	2155.42		0.0	$3/2^{+}$	
2167.2 5	2.0 4	2326.7	$(1/2^+ \text{ to } 5/2^+)$	159.526	1/2+	
2174.0 5	2.8 4	2403.5	$(3/2^+, 5/2, 7/2^-)$	229.40	7/2+	

004 γ 's measured in (n,γ) and ¹⁰⁵Tc β^- decay are not 2.4 in (n,γ) work, 0.40 18 here.

Comments

[†] From 1975Su02, unless noted otherwise.
[‡] From 1975RaZL. Transition not reported in 1975Su02.
[#] From measurements with a curved crystal spectrometer (1979Bo26).
[@] For absolute intensity per 100 decays, multiply by 0.02116 20.

& Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $x \gamma$ ray not placed in level scheme.

¹⁰⁵Tc β^- decay 2013Jo02,1975Su02,1979Bo26

 $^{105}_{44} \mathrm{Ru}_{61}$

¹⁰⁵Tc β^- decay 2013Jo02,1975Su02,1979Bo26

 $^{105}_{44}\mathrm{Ru}_{61}$

¹⁰⁵Tc β^- decay 2013Jo02,1975Su02,1979Bo26

¹⁰⁵₄₄Ru₆₁