	_					History						
	Туре			Aı	utho	r	Citation	Literature Cutoff Date				
	Full Evaluation S. Lalkov				Fima	ar and Z. Elekes	NDS 161, 1 (2019)	1-Apr-2019				
$Q(\beta^{-})=1917 \ 3; \ 3$	$Q(\beta^{-})=1917 \ 3$; $S(n)=-5910.10 \ 11$; $S(p)=-10720 \ 25$; $Q(\alpha)=-4839.5 \ 25 \ 2017Wa10$											
	¹⁰⁵ Ru Levels											
					Cro	oss Reference (XR	EF) Flags					
				105 T .	0-	daaay	$= 173 V h (24 M_{\odot} V_{\odot})$					
			R	¹⁰⁴ Ru(ρι 'nν) E=th	$\frac{168}{168} \text{Er}(^{30}\text{Si} X\gamma)$					
			c	¹⁰⁴ Ru((n,γ)) E=th:primary	G 104 Ru(d,p γ)					
D ¹⁰⁴ Ru(d,p)												
E(level) [†]	Jπ	T ₁	/2	XREF	7		Comn	nents				
0.0^{\ddagger}	3/2+	4.43	9 h <i>11</i>	ABCDEF	G	%β ⁻ =100						
						$\mu = (-)0.32 + 8 - 20$	0 (1981Lu04) = 1/2+ in 104Pr(n x) E	thursday I (d s) 2:				
						systematics of	the $3/2^+$ states in Ru i	isotopic chain.				
						$T_{1/2}$: weighted a	verage of: 4.45 h 2 (19	955Wi59), 4.44 h 2 (1960Ri03),				
						4.43 h 2 (1962	2Br15), 4.39 h 10 (196	5Pi01); Others: 1974Ca26,				
	1950S106, 1950Su07, 1946Bo28.											
20 606 & 14	5/2+	340 ns	15	ARCD F	G	μ . From oriented I^{π} : L (d p)=2: 20	$559 \times M1 + F2$ to $3/2^+$	$\cdot 5/2^+$ is supported by the				
20.000 14	5/2	540 113	15	ADCD I	U	single-particle	spectroscopic strength	; j/2 is supported by the				
						configuration: vd	l _{5/2} .					
L						$T_{1/2}$: from 20.55	$59\gamma(t)$ in ¹⁰⁵ Tc β^- deca	ıy (1975Su02).				
107.942 [‡] 8	$5/2^+$			AB D F	G	J^{π} : L(d,p)=2; 10'	7.945 γ M1+E2 to 3/2 ⁺	⁺ , 87.40 γ to 5/2 ⁺ ; band member.				
159.519 6	1/2*			ABCD	G	J^{*} : L(d,p)=0; 159	9.528 γ to 3/2 ⁺ .					
163.821 16	$(5/2^+)$	55 ns	7	AB D	G	J^{π} : L(d,p)=2; 142	3.26γ M1+E2 to $5/2^+$;					
						$T_{1/2}$: from 143.2	$26\gamma(t)$ in 1978Ho06. No	ot corrected for side feeding.				
185.8.6					G	Perhaps associ	lated with $T_{1/2}$ of 208.8	8-keV level.				
208.8^{a} 10	$(7/2^{-})$	<1 µs		DEF	G	J^{π} : L(d,p)=5; [E]	1] feeding to $(5/2^+)$; an	nalogy with 103 Ru (2016Ki20).				
229.50 [@] 4	7/2+	I · · ·		ABDF	G	J^{π} : 208.89 γ to 5/2 ⁺ , 229.51 γ to 3/2 ⁺ ; L(d,p)=4; single-particle						
						spectroscopic s	strength supports 7/2+.					
244 42 5	$(5/2^+, 7/2^+)$			D	c	configuration: vg	$\frac{57}{2}$	a primary transition from $1/2^+$				
244.42 3	(3/2 ,7/2)			Б	G	in 104 Ru(n, γ)]	E = th: primary.	to primary transition from 1/2				
246.382 10	$(3/2^+, 5/2^+)$			AB D	G	J^{π} : 138.446 γ M1	$1+E2$ to $5/2^+$, 246.29 γ	to 3/2 ⁺ ; However, L(d,p)=4,3				
	2 /2+				_	suggests $5/2^{-}$,	$7/2$ or $9/2^+$ assignment					
272.715 16	3/21			ABC	G	J [*] : 113.34 γ to 1/	$/2^{+}, 252.0/\gamma \text{ M1}(+\text{E2})$	to $5/2^{\circ}$, $2/2.65\gamma$ M1+E2 to				
						the $3/2^+$ states	in Ru isotopic chain.	y) E-ui.prinary, systematics of				
301.67 5	7/2+			B D G J^{π} : L(d,p)=4; 280.99 γ to 5/2 ⁺ , 301.61 γ to 3/2 ⁺ ;								
321.582 18	3/2-			ABCD	G	J^{π} : L(d,p)=1; 162	2.25 γ to 1/2 ⁺ , 213.66 γ	$2 \text{ E1 to } 5/2^+$; 5588.4 γ from $1/2^+$				
441 95 5	3/2+ 5/2+			in $^{10+}$ Ru(n, γ) E=th:primary.				282.67γ to $(1/2^+)$ 333.90 γ				
TT1.75 J	5/2 ,5/2				J	M1+E2 to $5/2$	+; no primary γ -ray from the primary γ -ra	om $1/2^+$ n-capture state supports				
2						5/2+.	1 5 7 5 2	· · · · · · · · · · · · · · · · · · ·				
465.3 ^{&} 6	$(9/2^+)$			F		J^{π} : 235.4 γ to 7/2	2^+ ; 357.3 γ to 5/2 ⁺ ; ban	nd member.				
466.20 5	3/2+			ABCD	G	J^{n} : L(d,p)=2; 300	6.76 γ M1+E2 to 1/2 ⁺ ,	$35'.94\gamma$ M1+E2 to $5/2^+$,				
						5444.07 Irom	$1/2$ in $\operatorname{Ku}(n,\gamma)$ E=	un:primary.				

Continued on next page (footnotes at end of table)

¹⁰⁵Ru Levels (continued)

E(level) [†]	\mathbf{J}^{π}	XREF	Comments
490.90 4	$(1/2,3/2)^{-}$	BCD G	J^{π} : 331.64 γ to 1/2 ⁺ , 490.78 γ to 3/2 ⁺ ; L(d,p)=1 or 3.
574.1 ^{<i>a</i>} 12	$(11/2^{-})$	EF	J^{π} : 365.3 γ to (11/2 ⁻); band member.
578.14 14	5/2-	AB D G	J^{π} : L(d,p)=3; 418.6 γ to 1/2 ⁺ , 470.3 γ to 5/2 ⁺ , 577.9 γ to 3/2 ⁺ ;
582.11 6	$3/2^+, 5/2^+$	BD G	J^{π} : L(d,p)=2; 309.51 γ to 3/2 ⁺ , 352.78 γ to 7/2 ⁺ ;
620.6 6		G	
625.84 14	$(7/2^+, 9/2^+)$	BD G	J^{π} : 396.38 γ to $7/2^+$, 605.1 γ to $5/2^+$; L(d,p)=4 or 5.
631.28 /	$1/2^{+}$ (1/2 to 7/2)	ABD G	J [*] : L(d,p)=0; 4/1.62 γ to 1/2 ⁺ , 631.3 γ to 3/2 ⁺ ;
044.11 11	(1/2 to 1/2)	AB G	J : 555.87 to 5/2 , 044.07 to 5/2 .
669.8 8	$(11/2^{+})$	F	J^{π} : 204.3 γ to (9/2 ⁺), 440.4 γ to //2 ⁺ ; band member.
670.60 4 725.02.11	$(1/2^{+}, 3/2^{+})$ (2/2 to 0/2)	BDC	$J^{*}: 39/.7/\gamma$ to $3/2^{\circ}$, 562.65γ to $5/2^{\circ}$, 5239.1γ from $1/2^{\circ}$ in ** Ku(n, γ) E=tn:primary.
725.92 11	$(3/2 \ 10 \ 9/2)$ $(3/2 \ 5/2)^+$	ARDG	J . 018.07 to $3/2$, $L(\mathbf{u},\mathbf{p}) \ge 3$. $I^{\pi} \cdot I (\mathbf{d},\mathbf{p}) = 2 \cdot 648$ 7x to $5/2^{+}$ 757 fby to $3/2^{+} \cdot$
784 67 9	$(3/2,3/2)^{-}$	ABC G	J^{π} : $L(0,p)=2, 0+0.77 \times 0.572$, 757.07×0.572 , I^{π} : 462.89 γ M1+F2 to $3/2^{-1}$: 5125 5 γ from $1/2^{+1}$ in 104 Ru(n γ) F=th primary
801.5 9	(1/2,3/2)	G	$3 \cdot 102.07$ M1+12 to $3/2$, 5125.57 from $1/2$ in Ru($1,77$ L-th.pinitary.
805.77 15	$1/2^{+}$	ABCD G	J^{π} : L(d,p)=0; 646.25 γ to 1/2 ⁺ ;
824.33 7	3/2+	ABCD G	J^{π} : L(d,p)=2; 665.02 γ to 1/2 ⁺ , 716.55 γ to 5/2 ⁺ ; 5086.0 γ from 1/2 ⁺ in ¹⁰⁴ Ru(n, γ)
			E=th:primary;
836.0 9		G	
841.11 21	$(7/2,9/2)^+$	B D G	J^{π} : L(d,p)=4; 539.44 γ to 7/2 ⁺ ;
8/3.62 20	$1/2^+$	B D G	J [*] : L(d,p)=0; /14.1 γ to 1/2 ⁺ ; π , L(d,p)=2; 565.02 μ to 2/2 ⁺ , 640.24 μ ; M1 μ E2 to (2/2 ⁺ , 5/2 ⁺); 5022.4 μ ; from 1/2 ⁺
880.03 8	3/2	ABCD G	J^{*} : L(d,p)=2; 505.027 to 5/2 , 640.547 M1+E2 to (5/2 , 5/2); 5025.47 from 1/2 104 Bu(n c) E-thunimont
003 10 15	3/2+ 5/2+	ARDC	$\operatorname{Ku}(\Pi,\gamma)$ $\operatorname{E}=\operatorname{ur.primary.}$
<i>J</i> 0 <i>J</i> .1 <i>J</i> 1 <i>J</i>	5/2 ,5/2	MD D G	J^{π} : L(d,p)=2: 657.0v to $3/2^+.5/2^+$. 739.35v to $3/2^+.5/2^+$ to $(3/2^+.5/2^+)$:
956.73 10	$(1/2^+, 3/2, 5/2^+)$	B G	J^{π} : 684.00y to 3/2 ⁺ , 797.4y to 1/2 ⁺ , 848.65y to 5/2 ⁺ .
967.15 20	$(1/2^+, 3/2^+)$	BC G	J^{π} : 4943.7 γ from $1/2^{+104}$ Ru(n, γ) E=th:primary.
977.0 <mark>&</mark> 12	$(13/2^+)$	F	J^{π} : 511.7 γ to (9/2 ⁺); band member.
994 [#] 5	$(3/2^+, 5/2^+)$	D	$J^{\pi}: L(d, p) = 2$
1058.78 14	$(3/2^+, 5/2, 7/2^+)$	В	J^{π} : 757.20 γ to 7/2 ⁺ ; 894.9 γ to 3/2 ⁺ .5/2 ⁺ .
1114 [#] 5	$(3/2^+, 5/2^+)$	D	$J^{\pi}: L(d,p)=2.$
1134.66 17	$(1/2^+ \text{ to } 7/2^+)$	ΒD	J^{π} : 1135.3 γ to 3/2 ⁺ .
1142.9 ^{<i>a</i>} 14	$(15/2^{-})$	EF	J^{π} : 568.8 γ to (15/2 ⁻); band member.
1145 [#] 5	$(3/2^+, 5/2^+)$	D	J^{π} : L(d,p)=(2).
1180.12 16	$(3/2^+, 5/2^+)$	BD G	J^{π} : L(d,p)=(2); 950.3 γ to 7/2 ⁺ , 1159.5 γ to 5/2 ⁺ .
1219.9 [@] 13	$(15/2^+)$	F	J^{π} : 550.1 γ to (11/2 ⁺); band member.
1325.56 11	(1/2,3/2)	ABC G	J^{π} : 439.00 γ to 3/2 ⁺ , 1004.1 γ to 3/2 ⁻ ; 4584.4 γ from 1/2 ⁺ in ¹⁰⁴ Ru(n, γ) E=th:primary.
1329.14 17	$(1/2^+, 3/2^+)$	BC G	J^{π} : 862.85 γ to 3/2 ⁺ ; 4580.1 γ from 1/2 ⁺ in ¹⁰⁴ Ru(n, γ) E=th:primary.
1575.2 ^{&} 16	$(17/2^+)$	F	J^{π} : 598.2 γ to (13/2 ⁺); band member.
1581 [#] 10	$(3/2^+, 5/2^+)$	D	J^{π} : L(d,p)=(2).
1693.6 4	$(1/2^+, 3/2^+)$	BC	J^{π} : 1534.1 γ to 1/2 ⁺ ; 4216.6 γ from 1/2 ⁺ in ¹⁰⁴ Ru(n, γ) E=th:primary.
1735.30 17	$(1/2^+, 3/2^+)$	BC	J^{π} : 847.8 γ to 3/2 ⁺ , 1575.3 γ to 1/2 ⁺ ; 4174.8 γ from 1/2 ⁺ in ¹⁰⁴ Ru(n, γ) E=th:primary.
1832.72 11	(1/2,3/2)	ABC	J^{π} : 1008.4 γ to 3/2 ⁺ , 1201.6 γ to 1/2 ⁺ , 1510.6 γ to 3/2 ⁻ ; 4076.7 γ from 1/2 ⁺ in
			104 Ru(n, γ) E=th:primary.
1843.3 3	(1/2,3/2)	Α	J^{π} : 1570.5 γ to 3/2 ⁺ , 1683.9 γ to 1/2 ⁺ ;
1844.8 [@] 16	$(19/2^+)$	F	J^{π} : 624.9 γ to (15/2 ⁺); band member.
1845.49 25	$(1/2^+, 3/2^+)$	BC G	J^{π} : 1823.8 γ to 5/2 ⁺ ; 4065.2 γ from 1/2 ⁺ in ¹⁰⁴ Ru(n, γ) E=th:primary.
1867.6^{a} 15	(19/2 ⁻)	EF	J^{*} : $7/24.7\gamma$ trom (19/2 ⁺); band member.
1930" 10	$(3/2^+, 5/2^+)$	D	J^{n} : L(d,p)=(2).
2148.4 3	$(3/2^{+})$	BC	J [*] : 2127.6 5 γ to 5/2 ⁺ ; 3761.7 γ from 1/2 ⁺ in ¹⁰⁴ Ru(n, γ) E=th:primary.
2100.45 <i>IU</i>	$(1/2^{+} \text{ to } 5/2^{+})$	A A	I^{π} : 2053 0 $_{2}$ to $3/2^{+}$
2320.1 4	(1/2 10 3/2) $(1/2^+ 3/2^+)$	л ВС	J. 2033.77 to $3/2$. I^{π} . 2332 12 to $5/2^{+}$. 3556 82 from $1/2^{+}$ in 104 Du(n 2) E-theorem
2352.04	(1/2, 3/2) $(1/2^+, 3/2^+)$	BC	J. 232.17 to $3/2$, 3530.67 from $1/2^+$ in $104 \text{ Ru}(n_2)$ E-theorem and $1/2^+$ in $104 \text{ Ru}(n_2)$ E-theorem
2319.14	(1/2,3/2)	DC	J = J = J = J = J = J = J = J = J = J =

Continued on next page (footnotes at end of table)

¹⁰⁵Ru Levels (continued)

E(level) [†]	J^{π}	XREF	Comments
2403.6 4	(3/2+,5/2,7/2-)	A	J^{π} : 2174.0y to 7/2 ⁺ , 2082.0y to 3/2 ⁻ .
2404.09 20	$(1/2^{-}, 3/2)$	BC	J ^{π} : 1826.3 γ to 5/2 ⁻ ; 3506.1 γ from 1/2 ⁺ in ¹⁰⁴ Ru(n, γ) E=th:primary.
2529.0 [@] 19	$(23/2^+)$	F	J^{π} : 684.2 γ to (19/2 ⁺); band member.
2710.8 ^{<i>a</i>} 16	$(23/2^{-})$	EF	J^{π} : 843.2 γ to (23/2 ⁻); band member.
3285.1 [@] 22	$(27/2^+)$	F	J^{π} : 756.1 γ to (23/2 ⁺); band member.
3641.4 ^a 17	$(27/2^{-})$	E	J^{π} : 930.6 γ to (27/2 ⁻); band member.
(5910.21 7)	$1/2^{+}$	С	J^{π} : s-wave capture on 0 ⁺ in ¹⁰⁴ Ru.

[†] From a least-squares fit to $E\gamma$. [‡] Probable member of the $\nu d_{5/2}^3$ multiplet.

From (d,p).
@ Band(A): Based on νg_{7/2}.

& Band(B): Based on $\nu d_{5/2}$.

^{*a*} Band(C): Probable member of the $11/2^{-}$ band.

						Adopted I	Levels, Gamm	as (continu	ued)
							$\gamma(^{105}\text{Ru})$		
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\ddagger}$	I_{γ} ‡	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ	α^{\dagger}	Comments
20.606	5/2+	20.56 2	100	0.0	3/2+	M1+E2	0.065 35	5.7 8	α(L)=5.2 9; α(M)=0.96 16; α(N+)=0.153 22 $ α(N)=0.148 22; α(O)=0.00498 8 $ $ B(M1)(W.u.)=0.00111 15; B(E2)(W.u.)≤20 $ $ α: from I(γ+ce) balance at 20.567-keV level in 104Ru(n,γ) $ $E=th ; Others: 6.7 12 (1978Gu14) and α≈24 (1974Hr01).$ $ δ: From α and α(M1)=4.02 6 and α(E2)=409 6.$
107.942	5/2+	87.40 [#] 5	<1.1 [#]	20.606	5/2+				
		107.945 ^{#&} 8	100 [#] 3	0.0	3/2+	M1+E2	-0.094 28	0.256 6	$\alpha(K)=0.223 \ 5; \ \alpha(L)=0.0275 \ 9; \ \alpha(M)=0.00507 \ 17; \\ \alpha(N+)=0.00086 \ 3 \\ \alpha(N)=0.00082 \ 3; \ \alpha(O)=4.11\times10^{-5} \ 8 \\ \alpha(D)=0.00082 \ 3; \ \alpha(D)=4.11\times10^{-5} \ 8 \\ \alpha(D)=0.00082 \ 3; \ \alpha(D)=0.00082$
									Mult.: $A_2 = -0.32$ 3 and $A_4 = 0.04$ 4 in ¹⁰⁴ Ru(n, γ) E=th (1974Hr01).
150 510	1/2+	51 0 [#] 4	0.0# 2	107.042	5/0+				δ: also -2.40 12 in ¹⁰⁴ Ru(n,γ) E=th (19/8Gu14).
159.519	1/2	51.2^{-4}	0.8" 3 100 [#]	107.942	3/2+				E : from a curved crystal measurement (1070Bo26)
163.821	(5/2+)	55.74 [#] 5	5.6 [#] 9	107.942	5/2+	[M1]		1.641	$\alpha(K)=1.429\ 21;\ \alpha(L)=0.1745\ 25;\ \alpha(M)=0.0321\ 5;\ \alpha(N)=0.00518\ 8;\ \alpha(O)=0.000265\ 4$ B(M1)(W.u.)=0.000101\ 22 Wult: $\Delta_{m}=0.8\ 4$ form u to going in 1075D c71
		143.26 [#] 7	100 [#] 5	20.606	5/2+	M1+E2	0.25 6	0.129 8	Mutt.: $A_{tot} = 0.84$ from x-y conic. in 1975KaZL. $\alpha(K)=0.112$ 6; $\alpha(L)=0.0143$ 12; $\alpha(M)=0.00263$ 22; $\alpha(N+)=0.00044$ 4
									α (N)=0.00042 4; α (O)=2.01×10 ⁻⁵ 9 B(M1)(W.u.)=0.000100 15; B(E2)(W.u.)=0.27 13 Mult.: A ₂ =-0.12 2 and A ₄ =0.00 2 in ¹⁰⁴ Ru(n, γ) E=th (1974Hr01).
185.8		185.84 6		0.0	3/2+				δ: Also >12 in ¹⁰⁴ Ru(n,γ) E=th (1978Gu14).
208.8	(7/2 ⁻)	(45)		163.821	(5/2 ⁺)	[E1]		1.354	 α(K)=1.174 17; α(L)=0.1489 21; α(M)=0.0270 4; α(N+)=0.00436 7 α(N)=0.00419 6; α(O)=0.0001676 24 B(E1)(W.u.)>1.3×10⁻⁶ E_γ: Not observed, but suggested by the evaluators on the basis of observed 365γ-143γ coinc. Mult.: assumed by the evaluators on the basis of 208.6-keV level T_{1/2} and decay pattern. Parity changing transitions of higher multipolarity would be unreasonably enhanced. Possible small M2 admixture. B(E1)(W.u.): >1.3×10⁻⁶ is consistent with B(E1)(W.u.) (7/2⁻ to 5/2=7).0×10⁻⁶ in ¹⁰³Ru (2016Ki20).
220 50	7/2+	121 61 8	21.5	107.042	$5/2^{+}$				

4

From ENSDF

 $^{105}_{44}\mathrm{Ru}_{61}$ -4

IJ

					Ado	opted Levels	, Gammas (cont	inued)	
						γ (¹⁰⁵ R	u) (continued)		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ	α^{\dagger}	Comments
229.50	7/2+	208.89 4	100 25	20.606	5/2+				
244.42	(5/2 ⁺ ,7/2 ⁺)	229.51 8 80.61 7 136.53 <i>12</i> 223.79 8 244.35 <i>12</i>	24 11 94 47 71 35 100 53 100 41	0.0 3 163.821 (107.942 5 20.606 5 0.0 3	3/2+ (5/2+) 5/2+ 5/2+ 3/2+				
246.382	(3/2+,5/2+)	82.546 [#] 14	100 [#] 19	163.821 ((5/2+)	M1+E2	0.07 2	0.542 10	α(K)=0.471 9; α(L)=0.0584 17; α(M)=0.0108 3; α(N+)=0.00182 5 α(N)=0.00173 5; α(O)=8.70×10-5 14 Eγ: from curved crystal measurements (1979Bo26). Mult.: A22=-0.112 9 and A44=-0.005 15 in 104Ru(n,γ) E=th (1978Gu14) and A22=-0.112 8 and A44=0 in 104Ru(n,γ) E=th (1978Gu14); Atot=0.6 3 from x-γ coinc. in 1975RaZL. δ: Also 0.45 4 in 104Ru(n,γ) E=th (1978Gu14).
		138.446 [#] 7	100 [#] 11	107.942 5	5/2+	M1+E2	-0.55 3	0.190 6	α(K)=0.162 5; α(L)=0.0236 10; α(M)=0.00438 18; α(N+)=0.00071 3 α(N)=0.00069 3; α(O)=2.75×10-5 8 Eγ: from curved crystal measurements (1979Bo26). Mult.: A22=-0.311 18 and A44=0.015 9 in 104Ru(n,γ) E=th (1978Gu14) or A22=-0.305 15 and 0 in 104Ru(n,γ) E=th (1978Gu14). δ: also -0.13 4 in 104Ru(n,γ) E=th (1978Gu14).
		225.6 [#] 1	69 [#] 7	20.606 5	5/2+	M1(+E2)	0.04 32	0.034 5	$\alpha(K)=0.030 \ 4; \ \alpha(L)=0.0035 \ 6; \ \alpha(M)=0.00065 \ 11; \\ \alpha(N+)=0.000111 \ 18 \\ \alpha(N)=0.000105 \ 17; \ \alpha(O)=5.5\times10^{-6} \ 5 \\ \text{Mult.: } A_2=0.00 \ 4 \text{ and } A_4=0.07 \ 6 \text{ in } ^{104}\text{Ru}(n,\gamma) \\ \text{E=th } (1974\text{Hr}01).$
272.715	3/2+	246.2 [#] 5 85.4 ^a 6 108.1 ^a 6 113.34 3 164.67 12	14 [#] 3 20.8 15	0.0 3 185.8 163.821 (159.519 1 107.942 5	$3/2^+$ (5/2 ⁺) $1/2^+$ 5/2 ⁺				
		252.07 2	100 4	20.606	5/2 ⁺	M1(+E2)	11 +14-4	0.0483 8	$\alpha(\mathbf{K})=0.0413$ 7; $\alpha(\mathbf{L})=0.00576$ 9; $\alpha(\mathbf{M})=0.001064$ 17 ; $\alpha(\mathbf{N}+)=0.000174$ 3 $\alpha(\mathbf{N})=0.000167$ 3: $\alpha(\mathbf{Q})=6.82\times10^{-6}$ 10
		272.65 3	60 4	0.0	3/2+	M1+E2	0.29 +11-7	0.0221 11	$\alpha(N)=0.0001075, \alpha(O)=0.02210770$ $\alpha(K)=0.01939; \alpha(L)=0.0023214; \alpha(M)=0.000433;$ $\alpha(N+)=7.2\times10^{-5}4$
301.67	7/2+	280.99 <i>10</i> 301.61 <i>6</i>	40 20 100 34	20.606 5 0.0 3	5/2 ⁺ 3/2 ⁺				$\alpha(N)=0.9\times10^{\circ}$ 4; $\alpha(O)=5.51\times10^{\circ}$ 15

S

 $^{105}_{44}$ Ru $_{61}$ -5

				Ado	pted Levels,	Gammas (cont	inued)	
					γ (¹⁰⁵ Ru) (continued)		
E _i (level)	\mathbf{J}_i^{π}	E _γ ‡	I_{γ}^{\ddagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [‡]	δ	α^{\dagger}	Comments
321.582	3/2-	48.94 <i>15</i> 75.25 <i>4</i> 157.81 <i>5</i> 162.25 <i>8</i> 213.66 <i>4</i>	0.46 23 25 3 33 3 8.1 23 17.1 17	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$) E1		0.01578	α (K)=0.01384 20; α (L)=0.001599 23; α (M)=0.000292 4; α (N+)=4.91×10 ⁻⁵ 7
441 95	3/2+ 5/2+	300.92 <i>5</i> 321.50 <i>3</i> 169 18 5	10.2 <i>14</i> 100 <i>14</i> 39 3	$\begin{array}{cccc} 20.606 & 5/2^+ \\ 0.0 & 3/2^+ \\ 272 & 715 & 3/2^+ \end{array}$	M1+F2	10+8-4	0 14 4	$\alpha(N) = 4.68 \times 10^{-5} 7; \ \alpha(O) = 2.33 \times 10^{-6} 4$ $\alpha(K) = 0.11 3; \ \alpha(L) = 0.017 5; \ \alpha(M) = 0.0031 10;$
441.95	3/2 ,3/2	107.10 5	57 5	272.713 372	WITTE2	1.0 +0-4	0.14 4	$\alpha(N)=0.113, \alpha(L)=0.0173, \alpha(M)=0.003170, \alpha(N)=0.003170, \alpha(N+)=0.0005115$ $\alpha(N)=0.0004914; \alpha(O)=1.9\times10^{-5}4$ Mult.: A ₂₂ =0.105 and A ₄₄ =-0.126 in ¹⁰⁴ Ru(n, γ) E=th (1978Gu14) or A ₂₂ =0.074 and A ₄₄ =0 in ¹⁰⁴ Ru(n, γ) E=th (1978Gu14).
		282.67 <i>10</i> 333.90 <i>20</i>	11 <i>3</i> 44 <i>13</i>	159.519 1/2 ⁺ 107.942 5/2 ⁺	M1+E2	-0.62 +4-7	0.0143 4	$\alpha(K)=0.0124 \ 3; \ \alpha(L)=0.00152 \ 5; \ \alpha(M)=0.000278 \ 8; \ \alpha(N+)=4.69\times10^{-5} \ 13 \ \alpha(N)=4.47\times10^{-5} \ 13; \ \alpha(O)=2.21\times10^{-6} \ 5 \ Mult.: \ A_{22}=-0.352 \ 29 \ and \ A_{44}=0.038 \ 48 \ in \ ^{104}Ru(n,\gamma) \ E=th \ (1978Gu14) \ or \ A_{22}=-0.340 \ 25 \ and \ A_{44}=0 \ in \ ^{104}Ru(n,\gamma) \ E=th \ (1978Gu14).$ $\delta; \ Also \ -3.7 \ +5-6 \ in \ ^{104}Ru(n,\gamma) \ E=th \ (1978Gu14).$
		420.9 <i>6</i> 442.00 <i>15</i>	100 13	$\begin{array}{ccc} 20.606 & 5/2^+ \\ 0.0 & 3/2^+ \end{array}$				
465.3	$(9/2^+)$	235.4 <mark>&</mark> 10	89 8	229.50 7/2+				
		357.3 ^{&} 10	100 11	107.942 5/2+				
466.20	3/2+	445.1 ^{&} 10 306.76 6	<16 100 27	20.606 5/2 ⁺ 159.519 1/2 ⁺	M1+E2		0.020 5	$\alpha(K)=0.017 \ 4; \ \alpha(L)=0.0022 \ 7; \ \alpha(M)=0.00041 \ 12; \ \alpha(N+)=6.8\times10^{-5} \ 19 \ \alpha(N)=6.5\times10^{-5} \ 18; \ \alpha(O)=3.0\times10^{-6} \ 6 \ I_{\gamma}: \ 41 \ 11 \ in \ ^{105}Tc \ \beta^{-} \ decay.$ Mult.: $A_{22}=-0.019 \ 41 \ and \ A_{44}=0.41 \ 17 \ in \ ^{104}Ru(n,\gamma) \ E=th \ (1978Gu14) \ or \ A_{22}=-0.015 \ 37 \ A_{44}=0.41 \ A_$
		357.94 12	93 20	107.942 5/2+	M1+E2		0.0128 23	and $A_{44}=0$ in ¹⁰⁴ Ru(n, γ) E=th (19/8Gu14). $\alpha(K)=0.0111 \ I^9$; $\alpha(L)=0.0014 \ 3$; $\alpha(M)=0.00025 \ 6$; $\alpha(N+)=4.2\times10^{-5} \ 9$ $\alpha(N)=4.0\times10^{-5} \ 9$; $\alpha(O)=1.9\times10^{-6} \ 3$ I _{γ} : 100 I9 in ¹⁰⁵ Tc β^- decay. Mult.: $A_{22}=0.150 \ I^5$ and $A_{44}=0.013 \ 25$ in ¹⁰⁴ Ru(n, γ) E=th (1978Gu14) or $A_{22}=0.158 \ I^3$ and $A_{44}=0$ in ¹⁰⁴ Ru(n, γ) E=th (1978Gu14).

6

				Adop	ted Levels, (Gammas (contin	nued)	
					$\gamma(^{105}\text{Ru})$	(continued)		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [‡]	δ	α^{\dagger}	Comments
466.20	3/2+	445.60 15	73 10	20.606 5/2+				I_{γ} : 64 13 in ¹⁰⁵ Tc β^- decay.
		466.2 3	67 20	$0.0 3/2^+$				I_{γ} : 59 6 in ¹⁰⁵ Tc β^- decay.
490.90	$(1/2, 3/2)^{-}$	169.9 ^{<i>a</i>} 6		321.582 3/2-				
		218.18 3	10.4 20	$272.715 3/2^+$				
		320.1° 0 331.64.16	20.8	$103.821 (3/2^{+})$ 159.519 1/2 ⁺				
		490.78 10	100 12	$0.0 3/2^+$				
574.1	$(11/2^{-})$	365.3 [@] 6		208.8 $(7/2^{-})$				
578.14	5/2-	418.6 2	11 4	159.519 1/2+				
		470.3 2	13 4	107.942 5/2+				
		577.9 [#] 5	100 [#] 12	0.0 3/2+				
582.11	$3/2^+, 5/2^+$	280.26 8	100 9	301.67 7/2+				
		309.51 8	40 5	272.715 3/2+				
(20) (352.78 12	49 14	$229.50 7/2^+$				
625.84	$(7/2^+ 0/2^+)$	1/8.0 0	18.0	$441.95 3/2^{+}, 5/2^{+}$				
023.04	(1/2,3/2)	$5167^{a}6$	10 9	$107 942 5/2^+$				
		605.1 <i>3</i>	100 45	$20.606 \ 5/2^+$				
631.28	$1/2^{+}$	358.51 12	36 22	272.715 3/2+				I_{γ} : 100 41 in ¹⁰⁵ Tc β^{-} decay.
		467.0 ^{<i>a</i>} 6		163.821 (5/2+)				, , , ,
		471.62 20	15 4	159.519 1/2+				I_{γ} : 54 27 in ¹⁰⁵ Tc β^- decay.
		631.3 2	100 11	0.0 3/2+				I_{γ} : 40 13 in ¹⁰⁵ Tc β^- decay.
644.11	(1/2 to 7/2)	$203.2^{a}_{\mu}6$	ш	441.95 3/2+,5/2+				
		322.3 [#] 5	100 [#] 30	321.582 3/2-				
		397.6 [#] 5	18 [#] 9	246.382 (3/2+,5/2+)				
		480.1 [#] 5	95 [#] 10	163.821 (5/2+)				
		535.8 [#] 5	<10 [#]	107.942 5/2+				
		644.0 [#] 5	47 <mark>#</mark> 9	0.0 3/2+				
669.8	$(11/2^+)$	204.3 ^{&} 10	27 3	465.3 (9/2 ⁺)				
		440.4 ^{&} 10	100 9	229.50 7/2+				
670.60	$(1/2^+, 3/2^+)$	397.77	84	272.715 3/2+				
		562.65 4	100 29	107.942 5/2+				
725.92	(3/2 to 9/2)	481.50 12	74	$244.42 (5/2^+, 7/2^+)$				
		618.0 2	100 25	107.942 5/2*				104
756.8	$(3/2, 5/2)^+$	314.7# 5	63# 27	441.95 3/2+,5/2+				I _{γ} : 100 in ¹⁰⁴ Ru(n, γ) E=th; Only this decay branch is observed in ¹⁰⁴ Ru(n, γ) E=th.
		484.0 [#] 5	37 # 7	272.715 3/2+				
		648.7 [#] 5	63 [#] 12	107.942 5/2+				
		757.0 [#] 5	100 [#] 13	$0.0 3/2^+$				
784.67	$(1/2, 3/2)^{-}$	462.89 12	100 6	321.582 3/2-	M1+E2	0.33 +12-7	0.00571 12	α=0.00571 12; α(K)=0.00500 10; α(L)=0.000584

 \neg

From ENSDF

 $^{105}_{44}$ Ru $_{61}$ -7

				Adopted	l Levels, Gan	nmas (con	tinued)	
					$\gamma(^{105}\text{Ru})$ (co	ontinued)		
E _i (level)	${ m J}^{\pi}_i$	${\rm E}_{\gamma}^{\ddagger}$	I_{γ}^{\ddagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [‡]	δ	α^{\dagger}	Comments
								<i>14</i> ; $\alpha(M)=0.000107$ <i>3</i> ; $\alpha(N+)=1.82\times10^{-5}$ <i>4</i> $\alpha(N)=1.73\times10^{-5}$ <i>4</i> ; $\alpha(O)=9.08\times10^{-7}$ <i>15</i> Mult.: A ₂₂ =0.349 <i>40</i> and A ₄₄ =0.019 <i>59</i> in ¹⁰⁴ Ru(n, γ) E=th (1978Gu14) or A ₂₂ =0.353 <i>38</i> and A ₄₄ =0 in ¹⁰⁴ Ru(n, γ) E=th (1978Gu14). δ : Also 0.88 + <i>15</i> - <i>18</i> in ¹⁰⁴ Ru(n, γ) E=th (1978Gu14).
784.67	(1/2,3/2)-	538.3 <i>4</i> 621.4 <i>3</i>	5.0 <i>21</i> 1.1 <i>7</i>	246.382 $(3/2^+, 5/2^+)$ 163.821 $(5/2^+)$)			
801.5		180.9 ^a 6		620.6				
805.77	$1/2^{+}$	646.25 15	100	159.519 1/2+				
824.33	3/2+	193.00 8	40 9	631.28 1/2+				
		333.28 20	50 22	490.90 (1/2,3/2)-				
		578.00	44 29	246.382 $(3/2^+, 5/2^+)$)			
		665.0 2	18 10	159.519 1/2+				
		716.55 15	37 15	107.942 5/2+				
		803.8 4	22 15	$20.606 \ 5/2^+$				
		824.45 15	100 15	$0.0 3/2^+$				
836.0		215.4 ^{<i>a</i>} 6		620.6				
841.11	$(7/2,9/2)^+$	539.44 20	100	301.67 7/2+				
873.62	1/2+	600.5 ^{<i>u</i>} 6		272.715 3/2+				
		714.1 2	100 29	159.519 1/2+				
886.63	3/2+	242.45 10	3.5 7	644.11 (1/2 to 7/2	2)			
		565.02 15	35 4	321.582 3/2		0.00.0	0.000	
		640.34 15	100 5	246.382 (3/2+,5/2+) M1+E2	0.20 2	0.00260 4	$\alpha = 0.00260 \ 4; \ \alpha(K) = 0.00228 \ 4; \ \alpha(L) = 0.000262 \ 4; \alpha(M) = 4.80 \times 10^{-5} \ 7; \ \alpha(N+) = 8.20 \times 10^{-6} \ 12 \alpha(N) = 7.79 \times 10^{-6} \ 11; \ \alpha(O) = 4.15 \times 10^{-7} \ 6 Mult.: \ A_{22} = -0.013 \ 48 \ and \ A_{44} = -0.012 \ 76 \ in 1^{04} Ru(n,\gamma) \ E=th \ (1978Gu14) \ or \ A_{22} = -0.017 \ 43 in \ ^{104} Ru(n,\gamma) \ E=th \ (1978Gu14).$
		722.8 [#] 5	<6 [#]	$163.821 (5/2^+)$				
903.19	3/2+,5/2+	657.0 [#] 5 739.35 15	<10 [#] 100 //	246.382 $(3/2^+, 5/2^+)$ 163.821 $(5/2^+)$)			
956.73	(1/2+,3/2,5/2+)	684.00 <i>15</i> 710.2 <i>4</i> 797.4 <i>2</i> 848 65 20	92 22 76 32 100 16 86 27	$\begin{array}{c} 272.715 & 3/2^+ \\ 246.382 & (3/2^+, 5/2^+ \\ 159.519 & 1/2^+ \\ 107.942 & 5/2^+ \end{array}$)			
967 15	$(1/2^+ 3/2^+)$	323 27 20	100	$644\ 11\ (1/2 \text{ to } 7/2)$	9			
077.0	(1/2, 3/2)	525.2720	100	$1/2 = 0.02^{+}$	9			
1058.78	$(15/2^+)$ $(3/2^+, 5/2, 7/2^+)$	757.20 <i>15</i> 829.2 <i>4</i>	$100 \\ 100 \\ 10 \\ 5 \\ 4 \\ 20 \\ 14$	$\begin{array}{ccc} 403.5 & (9/2^{+}) \\ 301.67 & 7/2^{+} \\ 229.50 & 7/2^{+} \\ 162.821 & (5/2^{+}) \end{array}$				
1134 66	$(1/2^+ \text{ to } 7/2^+)$	074.7 4 071 7 1	50-14 17-10	$103.621 (3/2^{\circ})$ $163.821 (5/2^{+})$				
1154.00	(1/2 10 1/2)	7/1./4	17 10	103.021 (3/2)				

 ∞

From ENSDF

 $^{105}_{44}$ Ru $_{61}$ -8

$\gamma(^{105}\text{Ru})$ (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^π	Comments
1134.66	$(1/2^+ \text{ to } 7/2^+)$	1135.3 4	100 38	0.0	3/2+	
1142.9	$(15/2^{-})$	568.8 [@] 6		574.1	$(11/2^{-})$	
1180.12	$(3/2^+, 5/2^+)$	738.3 4	41 20	441.95	3/2+,5/2+	
		878.5 2	95 24	301.67	7/2+	
		950.3 4	51 20	229.50	7/2+	
		1159.5 5	100 41	20.606	5/21	
1219.9	$(15/2^+)$	550.1° 10	100	669.8	$(11/2^+)$	
1323.30	(1/2, 3/2)	439.00 13	879 100 <i>14</i>	880.03 784.67	$\frac{3}{2}$ $(\frac{1}{2}, \frac{3}{2})^{-}$	
		883 5 5	100 14	441.95	(1/2, 3/2) $3/2^+ 5/2^+$	F_{w} : from ¹⁰⁵ Tc β^{-} decay
		1004.1 4	81 <i>21</i>	321.582	3/2-,5/2	
1329.14	$(1/2^+, 3/2^+)$	862.85 20	100 25	466.20	3/2+	
		887.3 <i>3</i>	38 13	441.95	$3/2^+, 5/2^+$	
1575.2	$(17/2^+)$	598.2 ^{&} 10	100	977.0	$(13/2^+)$	
1693.6	$(1/2^+, 3/2^+)$	1534.1 5	100	159.519	$1/2^+$	
1/35.30	$(1/2^+, 3/2^+)$	600.65 <i>3</i> 847 8 <i>4</i>	18 8	886.63	$(1/2^+ \text{ to } 1/2^+)$	
		1090.7 4	100 25	644.11	(1/2 to 7/2)	
		1575.3 6	47 20	159.519	$1/2^+$	
1832.72	(1/2, 3/2)	1008.4 [#] 1	54 [#] 5	824.33	3/2+	
		1047.9 [#] 5	18 [#] 9	784.67	$(1/2,3/2)^{-}$	
		1201.6 [#] 5	36 [#] 4	631.28	$1/2^{+}$	
		1366.3 [#] 5	100 [#] 10	466.20	$3/2^{+}$	
		1510.6 [#] 5	73 # 7	321.582	3/2-	
		1560.1 [#] 5	63 [#] 7	272.715	$3/2^{+}$	
		1673.3 [#] 5	<5 #	159.519	1/2+	
1843.3	(1/2, 3/2)	1058.5 [#] 5	100 [#] 36	784.67	$(1/2, 3/2)^{-}$	
		1570.5 [#] 5	<18 [#]	272.715	$3/2^{+}$	
		1683.9 [#] 5	<18 [#]	159.519	1/2+	
1844.8	$(19/2^+)$	624.9 <mark>&</mark> 10	100	1219.9	$(15/2^+)$	
1845.49	$(1/2^+, 3/2^+)$	878.5 2	100 26	967.15	$(1/2^+, 3/2^+)$	
		1823.8 6	28 13	20.606	5/2+	
1867.6	(19/2 ⁻)	724.7 [@] 6		1142.9	$(15/2^{-})$	
2148.4	$(3/2^{+})$	2127.6 5	100	20.606	5/2+	
2155.43		1370.8 [#] 5	32" 7	784.67	$(1/2,3/2)^{-}$	
		1882.7 [#] 5	7.1# 14	272.715	3/2+	
		2155.4 [#] 1	100 [#] 11	0.0	3/2+	
2326.7	$(1/2^+ \text{ to } 5/2^+)$	2053.9 [#] 5	100 [#] 21	272.715	3/2+	

9

$\gamma(^{105}\text{Ru})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	Iγ [‡]	E_f	${ m J}_f^\pi$	Mult. [‡]	Comments
2326.7	$(1/2^+ \text{ to } 5/2^+)$	2167.2 [#] 5	21 [#] 4	159.519	1/2+		
2352.8	$(1/2^+, 3/2^+)$	1910.5 5	100 26	441.95	$3/2^+, 5/2^+$		
2379.7	$(1/2^+, 3/2^+)$	1321.8 5	100	1058.78	$(3/2^+, 5/2, 7/2^+)$		
2403.6	$(3/2^+, 5/2, 7/2^-)$	2082.0 [#] 5	100 [#] 21	321.582	3/2-		
		2174.0 [#] 5	29 [#] 4	229.50	7/2+		
2404.09	$(1/2^{-}, 3/2)$	1826.3 6	100 10	578.14	5/2-		
2529.0	$(23/2^+)$	684.2 ^{x} 10	100	1844.8	$(19/2^+)$		
2710.8	$(23/2^{-})$	843.2 ^{^w} 6		1867.6	$(19/2^{-})$		
3285.1	$(27/2^+)$	756.1 ^{&} 10	100	2529.0	$(23/2^+)$		
3641.4	$(27/2^{-})$	930.6 ^{^w} 6	10 0 10	2710.8	$(23/2^{-})$		
(5910.21)	1/2 '	3506.1 2	10.2 12	2404.09	(1/2, 3/2) $(1/2^+, 3/2^+)$		
		3556.8.6	1.8 7	2379.7	$(1/2^+, 3/2^+)$		
		3761.7 3	9.2 8	2148.4	$(3/2^+)$		
		4065.2 7	1.8 6	1845.49	$(1/2^+, 3/2^+)$		
		4076.7 9	2.5 6	1832.72	(1/2,3/2)		
		41/4.8 3	20.9 12	1/35.30	$(1/2^+, 3/2^+)$ $(1/2^+, 3/2^+)$		
		4580.1 10	3.5 4	1329.14	$(1/2^+, 3/2^+)$		
		4584.4 2	13.6 10	1325.56	(1/2,3/2)		
		4943.7 7	53	967.15	$(1/2^+, 3/2^+)$		104
		5023.4 2	100 19	886.63	3/2+	D	Mult.: $A_{22}=-0.072 \ 30$ and $A_{44}=-0.025 \ 47$ in ${}^{104}Ru(n,\gamma)$ E=th (1978Gu14) or $A_{22}=-0.081 \ 27$ and $A_{44}=0$ in ${}^{104}Ru(n,\gamma)$ E=th (1978Gu14)
		5086.0 2	25 8	824.33	3/2+		
		5125.5 3	27.0 16	784.67	$(1/2, 3/2)^{-}$		
		5239.1 4	1.6 8	670.60	$(1/2^+, 3/2^+)$		
		5588 4 2	30.4.20	400.20	$\frac{3}{2}$		
		5637.1 2	6.4 16	272.715	3/2+		
		5750.7 2	13 <i>3</i>	159.519	1/2+		
		5909.9 2	28.8 24	0.0	3/2+		

10

[†] Additional information 1. [‡] From ¹⁰⁴Ru(n, γ) E=th, unless otherwise noted. [#] From ¹⁰⁵Tc β^- decay. [@] From ¹⁷³Yb(²⁴Mg,X γ).

 $\gamma(^{105}\text{Ru})$ (continued)

- [&] From ¹⁶⁸Er(³⁰Si,X γ). ^{*a*} From ¹⁰⁴Ru(d,p γ).

340 ns *15* 4.439 h *11*

 $^{105}_{44}\mathrm{Ru}_{61}$

¹⁰⁵₄₄Ru₆₁

 $^{105}_{44}$ Ru₆₁

15

 $^{105}_{44}$ Ru₆₁-15

From ENSDF

 $^{105}_{44}$ Ru₆₁-15

 $^{105}_{44}$ Ru₆₁

 $^{105}_{44}$ Ru₆₁