96 Zr(13 C,p3n γ) 2004Ti04

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	S. Lalkovski, J. Timar and Z. Elekes	NDS 161, 1 (2019)	1-Apr-2019						

¹⁰⁵Rh Levels

Facility: Strasbourg's IReS Vivitron; Beam: $E(^{13}C)=51$ and 58 MeV; Target: stack of two targets with thickness of 558 μ g/cm² enriched to 86% in ⁹⁶Zr; Detectors: EUROBALL IV comprising 15 Cluster, and 24 Clover detectors at backward angles and at≈90 deg., DIAMANT comprising 88 CsI scintillators; Measured: γ - γ coinc., particle- γ coinc., E γ , I γ , $\gamma \gamma(\theta)$ (DCO); Deduced: ¹⁰⁵Rh level scheme, band structure, γ -ray Mult., J^{π} .

	4		4	I 🔺			
E(level)	J^{π}	E(level)	$J^{\pi +}$	E(level)	J ^π ∔	E(level)	J#‡
0.0 [@]	7/2+	1605.4 [#] 11	$17/2^{+}$	3535.8 [#] 14	$25/2^+$	5763.1 ^{&} 17	37/2+
149.0 [#] 6	9/2+	1677.0 ^f 10	$15/2^{+}$	3838.5 <mark>&</mark> 15	$29/2^+$	6019.5 ^c 16	37/2+
499.8 7	$5/2^{+}$	1937.3 ^d 16	$15/2^{+}$	4001.8 ^b 14	$27/2^+$	6343.8 ^a 17	39/2+
603.0 [@] 7	$11/2^{+}$	2164.0 ^e 11	$(17/2^+)$	4214.2 ^{<i>a</i>} 15	$31/2^{+}$	6565.5 ^b 17	39/2+
734.0 ^{<i>f</i>} 7	$11/2^{+}$	2244.0 [@] 12	$19/2^{+}$	4297.8 ^C 14	$29/2^+$	7037.0 ^{&} 18	$41/2^{+}$
795.1 [#] 9	$13/2^{+}$	2520.8 [#] 13	$21/2^+$	4688.7 ^b 14	$31/2^+$	7155.5 ^c 17	$41/2^{+}$
1019.3 <mark>d</mark> 7	7/2+	2616.0 ^{<i>f</i>} 14	$(19/2^+)$	4701.3 ^{&} 15	$33/2^+$	7711.7 <mark>a</mark> 19	$43/2^{+}$
1207.0 ^e 9	$13/2^{+}$	2980.8 ^a 13	$23/2^{+}$	5079.8 ^c 15	$33/2^{+}$	8466.4 ^{&} 19	$45/2^{+}$
1365.9 [@] 10	$15/2^{+}$	3196.8 ^{&} 14	$25/2^+$	5183.3 ^a 16	$35/2^+$	8523.5 ^C 20	$(45/2^+)$
1400.3 ^d 12	$11/2^+$	3477.0 ^a 14	$27/2^+$	5524.3 ^b 15	$35/2^+$	9211.7 ^a 21	$(47/2^+)$

[†] From a least-squares fit to $E\gamma$; $\Delta E_{\gamma}=1$ keV assumed by the evaluators.

[‡] From the Adopted Levels.

Band(A): $\pi g_{9/2}$, $\alpha = +1/2$.

[@] Band(a): $\pi g_{9/2}$, $\alpha = -1/2$.

[&] Band(B): $\pi g_{9/2} \nu (h_{11/2})^2$, $\alpha = +1/2$. Chiral yrast.

^{*a*} Band(b): $\pi g_{9/2} \nu (h_{11/2})^2$, $\alpha = -1/2$. Chiral yrast. ^{*b*} Band(C): $\pi g_{9/2} \nu (h_{11/2})^2$, $\alpha = +1/2$. Chiral yrare.

^c Band(c): $\pi g_{9/2} \nu (h_{11/2})^2$, $\alpha = -1/2$. Chiral yrare.

^{*d*} Band(D): $\pi 1/2[431]$.

^{*e*} Band(E): γ -vibrational band, $\alpha = +1/2$.

f Band(e): γ -vibrational band, $\alpha = -1/2$.

 $\gamma(^{105}\text{Rh})$

E_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	
149	149.0	$9/2^{+}$	0.0	$7/2^{+}$	
192	795.1	$13/2^{+}$	603.0	$11/2^+$	
216	3196.8	$25/2^{+}$	2980.8	$23/2^{+}$	
240	1605.4	$17/2^{+}$	1365.9	$15/2^{+}$	
277	2520.8	$21/2^{+}$	2244.0	$19/2^{+}$	
280	3477.0	$27/2^{+}$	3196.8	$25/2^+$	
296	4297.8	$29/2^{+}$	4001.8	$27/2^+$	
351	499.8	$5/2^{+}$	149.0	$9/2^{+}$	
361	3838.5	$29/2^{+}$	3477.0	$27/2^+$	
376	4214.2	$31/2^{+}$	3838.5	$29/2^+$	
381	1400.3	$11/2^{+}$	1019.3	7/2+	
391	4688.7	$31/2^{+}$	4297.8	$29/2^+$	

Continued on next page (footnotes at end of table)

⁹⁶Zr(¹³C,p3nγ) 2004Ti04 (continued)

$\gamma(^{105}\text{Rh})$ (continued)

E_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [‡]	δ	Comments
391	5079.8	$33/2^{+}$	4688.7	$31/2^{+}$			
444	5524.3	$35/2^+$	5079.8	$33/2^+$			
454	603.0	$11/2^{+}$	149.0	$9/2^{+}$			
460	2980.8	$23/2^+$	2520.8	$21/2^{+}$			
466	4001.8	$27/2^+$	3535.8	$25/2^+$	M1+E2	0.24 8	Mult.: $\Delta J=1$ transition.
470	1677.0	$15/2^{+}$	1207.0	$13/2^{+}$			
473	1207.0	$13/2^{+}$	734.0	$11/2^{+}$			
482	5183.3	$35/2^+$	4701.3	$33/2^{+}$			
487	2164.0	$(17/2^+)$	1677.0	$15/2^{+}$			
487	4701.3	$33/2^{+}$	4214.2	$31/2^{+}$			
495	6019.5	$37/2^+$	5524.3	$35/2^+$			
496	3477.0	$27/2^+$	2980.8	$23/2^{+}$			
500	499.8	$5/2^{+}$	0.0	7/2+			
520	1019.3	7/2+	499.8	5/2+			
537	1937.3	$15/2^{+}$	1400.3	$11/2^{+}$			
546	6565.5	39/2+	6019.5	$37/2^+$			
571	1365.9	$15/2^+$	795.1	$13/2^{+}$			
580	5763.1	37/2+	5183.3	35/2+			
581	6343.8	39/2+	5763.1	37/2+			
585	734.0	11/2+	149.0	9/2+			
590	7155.5	41/2	6565.5	39/2			
603	603.0	11/2	0.0	1/2			
604	1207.0	$13/2^{+}$	603.0	$11/2^{+}$			
639	2244.0	19/2	1605.4	$1/2^{+}$			
042	3838.3	$\frac{29}{2}$	3190.8	25/2			
040 675	795.1	$\frac{13}{2}$	149.0	$9/2^{+}$			
676	2106.9	45/2	2520.8	$\frac{41}{2}$			
687	J190.8 4688 7	$\frac{23}{2}$	4001.8	$\frac{21}{2}$			
603	7037.0	$\frac{31/2}{41/2^+}$	63/13.8	20/2+			
734	734.0	$\frac{41}{2}$ $11/2^+$	0.045.8	39/2 7/2+			
737	2980.8	$\frac{11/2}{23/2^+}$	2244.0	$19/2^+$			
737	4214.2	$\frac{23/2}{31/2^+}$	3477.0	$\frac{17}{2}$			
755	8466.4	$45/2^+$	77117	$\frac{27}{2}^{+}$			
762	4297.8	$29/2^+$	3535.8	$25/2^+$			
763	1365.9	$15/2^+$	603.0	$\frac{11}{2^+}$			
782	5079.8	$33/2^+$	4297.8	$29/2^+$			
805	4001.8	$27/2^+$	3196.8	$25/2^+$			
810	1605.4	$17/2^{+}$	795.1	$13/2^{+}$			
821	4297.8	$29/2^+$	3477.0	$27/2^{+}$	M1+E2	0.37 8	Mult.: $\Delta J=1$ transition.
823	5524.3	$35/2^+$	4701.3	$33/2^{+}$			
836	5524.3	$35/2^+$	4688.7	$31/2^{+}$			
850	4688.7	$31/2^{+}$	3838.5	$29/2^{+}$			
863	4701.3	$33/2^{+}$	3838.5	$29/2^{+}$			
866	5079.8	$33/2^{+}$	4214.2	$31/2^{+}$			
870	1019.3	$7/2^{+}$	149.0	9/2+			
878	2244.0	$19/2^{+}$	1365.9	$15/2^{+}$			
915	2520.8	$21/2^{+}$	1605.4	$17/2^{+}$			
939	2616.0	$(19/2^+)$	1677.0	$15/2^{+}$			
940	6019.5	$37/2^+$	5079.8	33/2+			
943	1677.0	$15/2^{+}$	734.0	$11/2^{+}$			
957	2164.0	$(17/2^+)$	1207.0	$13/2^{+}$			
969	5183.3	35/2+	4214.2	31/2+			
1015	3535.8	25/2+	2520.8	21/2+	E2		
1019	1019.3	1/2*	0.0	1/2+			
1021	4001.8	$27/2^{+}$	2980.8	23/2+			

Continued on next page (footnotes at end of table)

96 Zr(13 C,p3n γ) 2004Ti04 (continued)

$\gamma(^{105}\text{Rh})$ (continued)

E_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	E_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}
1041 1062 1101 1136 1160 1212 1241	6565.5 5763.1 4297.8 7155.5 6343.8 4688.7 5079.8	39/2 ⁺ 37/2 ⁺ 29/2 ⁺ 41/2 ⁺ 39/2 ⁺ 31/2 ⁺ 33/2 ⁺	5524.3 4701.3 3196.8 6019.5 5183.3 3477.0 3838 5	35/2+ 33/2+ 25/2+ 37/2+ 35/2+ 27/2+ 27/2+ 29/2+	1274 1310 1368 1368 1429 1500	7037.0 5524.3 7711.7 8523.5 8466.4 9211.7	$\begin{array}{c} 41/2^+\\ 35/2^+\\ 43/2^+\\ (45/2^+)\\ 45/2^+\\ (47/2^+) \end{array}$	5763.1 4214.2 6343.8 7155.5 7037.0 7711.7	37/2 ⁺ 31/2 ⁺ 39/2 ⁺ 41/2 ⁺ 41/2 ⁺ 43/2 ⁺

 † From 2004Ti04. ‡ From 2004Ti04, based on DCO ratios and linear polarization measurements. No details provided by the authors.

⁹⁶Zr(¹³C,p3nγ) 2004Ti04

Level Scheme

 $^{105}_{45}\text{Rh}_{60}$

4

⁹⁶Zr(¹³C,p3nγ) 2004Ti04

Level Scheme (continued)

 $^{105}_{45} \mathrm{Rh}_{60}$

 $^{105}_{45} \mathrm{Rh}_{60}$

