¹⁰⁵Ag ε decay (41.29 d) **1996Me17,1970Ka13**

TypeHistoryTypeAuthorCitationFull EvaluationS. Lalkovski, J. Timar and Z. ElekesNDS 161, 1 (2019)1-Apr-2019

Parent: ¹⁰⁵Ag: E=0.0; $J^{\pi}=1/2^{-}$; $T_{1/2}=41.29$ d 7; $Q(\varepsilon)=1347$ 5; $\%\varepsilon+\%\beta^{+}$ decay=100.0

1996Me17: Facility: LNL ICT accelerator; Source: from (n,γ) reactions on 50-100 mg thick target enriched to 82.09% in ¹⁰⁶Cd. Neutron flux= $6x10^{12}$ n/sec in 4π from ²H(³H,⁴He)n reaction; Detectors: one large Ge(Li) and one small Ge(Li) x-ray detector; Measured: γ , E γ , I γ ; Deduced: ¹⁰⁵Pd level scheme, log *ft*, J.

1983Si08: Facility: AERE, Harawell Tandem Accelerator; Source: from ¹⁰³Rh(α ,2n), E(α)=28 MeV; Detectors: one Ge(Li), one NaI(TI); Measured: γ , $\gamma\gamma$, $\gamma\gamma(\theta)$, E γ , I γ ; Deduced: δ , Mult., ¹⁰⁵Pd level scheme.

1970Ka13: Facility: Tokyio Institute of Technology cyclotron; Source: ¹⁰⁵Ag, chemically separated from ^{nat}Pd(p,2n) and ¹⁰⁶Pd(p,2n) and mounted on 10 μ m Pt and 2 μ m Ni foils; Detectors: β -spectrometer with σ =0.013% for 662-keV line, one proportional gas counter, and one Si(Li) detector; Measured: γ , β , Ice, I γ , E $_{\beta}$, E γ ; Deduced: level scheme, δ .

1981Al19: Facility: KFZ Karlsruhe cyclotron; Soruce: chemically separated from (α ,2n) on natural Rh and (d,2n) on enriched in ¹⁰⁵Pd target and beam energies E(α)=50 MeV, E(d)=15 MeV. Measurements taken 6 weeks after irradiation to eliminate contribution from ^{105m}Ag; Detectors: three large-volume plannar Ge detectors, two cooled pure NaI detectors; Measured: γ , $\gamma\gamma$, $\gamma\gamma(\theta)$, E γ , I γ ; Deduced: level scheme, g-factors, T_{1/2}.

1977Ba32: Source: from ¹⁰⁵Pd(p,n) reaction with E(p)=6.7 MeV and target enriched to 94% in ¹⁰⁵Pd; Detectors: one Ge(Li), one NaI(Tl); Measured: γ , $\gamma\gamma(\theta)$, E γ , I γ ; Deduced: δ , ¹⁰⁵Pd level scheme.

1970Sc10: Facility: ISOLDE synchro-cyclotron; Beam: E(p)=600 MeV; Target: Sn; Source: mass-separated ¹⁰⁵Cd. Measurements performed few days after irradiation; Detectors: on-line separator, one planar Ge(Li), one plastic (Pilot β) and one NaI(Tl); Measured: γ , γ (t), E γ , I γ ; Deduced: T_{1/2}.

Others: 1984BeZQ, 1979Be66, 1979BeYM, 1978Ve04, 1976BaYL, 1976JaZU, 1975BeYC, 1974ArZY, 1973Se20, 1973ThZL, 1972Be67, 1972Bf01, 1971BeWF, 1971BeWG, 1971RiZH, 1970BIZT, 1969Ho36, 1969Ka02, 1969McZY, 1968An14, 1968Ri10.

¹⁰⁵Pd Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	5/2+		
280.5 4	3/2+ #		g= -0.049 12 from IPAC in 1981A119, assuming T _{1/2} =67 ps 12.
306.3 7	7/2+		
319.2 5	5/2 ^{+#}		g=+38 8 from IPAC in 1981A119, assuming $T_{1/2}$ =38 2 ps.
344.6 5	1/2+	1.01 ns 5	$T_{1/2}$: from 618 γ -344 γ (t) and 22X-344 γ (t) in 1970Sc10; Others: 0.88 ns 5 in 1974Be71, 0.801 ns 64 in 1969Ka02.
442.3 6	$(7/2)^{+\#}$		
489.2 9	11/2-		
560.7 5	$3/2^{+}$		
644.6 <i>6</i>	7/2-	126 ps 2	T _{1/2} : 443-645 γ (t) with cooled NaI detectors (1981Al19). g=-0.427 25 from IPAC in 1981Al19. configuration: 2 ⁺ \otimes <i>v</i> h _{11/2} .
650.8 5	$(3/2)^+$		6 11/2
673.2 5	1/2 ^{+#}		
727.3 5	5/2+		
921.2 6	$(1/2^+ \text{ to } 5/2^+)$		
929.1 6	(5/2+)		
962.5 5	$(1/2,3/2)^+$		
1088.1 4	3/2-		
1125.2 7	$(1/2^+ \text{ to } 7/2^+)$		

[†] From a least-squares fit to $E\gamma$. $\Delta E\gamma = 1$ keV adopted by the evaluators.

[‡] From the Adopted Levels.

[#] Possible member of the $2^+ \otimes v d_{5/2}$ multiplet.

$^{105}\mathrm{Ag}\,\varepsilon$ decay (41.29 d) 1996Me17,1970Ka13 (continued)

ε, β^+ radiations

E(decay)	E(level)	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$	Comments
(222 5)	1125.2	0.042 5	8.84 6	0.042 5	εK=0.8420 7; εL=0.1266 6; εM+=0.03144 16
(259 5)	1088.1	17.5 17	6.36 5	17.5 17	εK=0.8461 5; εL=0.1234 4; εM+=0.03053 11
(385 5)	962.5	1.79 17	7.72 5	1.79 <i>17</i>	εK=0.8536 2; εL=0.11752 16; εM+=0.02886 5
(426 5)	921.2	0.073 7	9.21 5	0.073 7	εK=0.8551 2; εL=0.11640 13; εM+=0.02854 4
(620 5)	727.3	0.036 4	9.99^{1u} 5	0.036 4	εK=0.8458 3; εL=0.12361 18; εM+=0.03064 6
(674 5)	673.2	2.9 <i>3</i>	8.02 5	2.9 <i>3</i>	εK=0.8598; εL=0.11270 5; εM+=0.02749 2
(696 5)	650.8	7.2 7	7.66 5	7.2 7	εK=0.8601; εL=0.11250 5; εM+=0.02744 2
(702 [‡] 5)	644.6	0.053 7	$10.30^{2u} 6$	0.053 7	εK=0.8323 4; εL=0.1340 3; εM+=0.03370 9
(786 5)	560.7	0.14 4	9.83 ¹ <i>u</i> 13	0.14 4	εK=0.8514 2; εL=0.1192 1; εM+=0.02938 3
(905 5)	442.3	0.27 3	9.32 5	0.27 3	εK=0.8618; εL=0.11113 3; εM+=0.027051 8
(1002 5)	344.6	67 7	7.01 5	67 7	εK=0.8624; εL=0.11069 2; εM+=0.026927 6
(1028 [‡] 5)	319.2	0.19 10	$10.17^{1u} \ 23$	0.19 10	εK=0.8558; εL=0.11579 6; εM+=0.02838 2
$(1041^{\ddagger} 5)$	306.3	0.136 14	9.74 5	0.136 14	εK=0.8626; εL=0.11054 2; εM+=0.026885 6
(1067 5)	280.5	1.2 4	8.82 15	1.2 4	εK=0.8627; εL=0.11045 2; εM+=0.026859 5
1347 5	0.0	≈1	$\approx 9.9^{1u}$	≈1	εK=0.8586; εL=0.11331 4; εM+=0.027677 9

[†] Absolute intensity per 100 decays.
[‡] Existence of this branch is questionable.

Iγ normalization: $I_{\beta+} = 8.5 \times 10^{-6}$ 14 in 1967Pi03, ε/ $I_{\beta+} = 2.7 \times 10^3$ 202 from theory and $(100 - I_{\beta+\epsilon})/I(γ+ce)(g.s.)$.

ω

E _γ ‡	Ι _γ ‡@	E _i (level)	${ m J}^{\pi}_i$	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	α^{\dagger}	Comments
38.77	0.13	319.2	5/2+	280.5	3/2+	M1(+E2)		24 18	$\alpha(K)=12\ 7;\ \alpha(L)=10\ 10;\ \alpha(M)=1.9\ 18;\ \alpha(N+)=0.3\ 3$
64.072	268	344.6	1/2+	280.5	3/2+	M1(+E2)	-0.025 30	1.354 23	$\alpha(K) \exp = 1.17 \ 7 \ (1970Ka13)$ $\alpha(K) = 1.175 \ 19; \ \alpha(L) = 0.147 \ 5; \ \alpha(M) = 0.0276 \ 9;$ $\alpha(N+) = 0.00463 \ 14$ $\alpha(N) = 0.00463 \ 14$ $\alpha(N) = 0.00463 \ 14$
90.01	0.8	650.8	$(3/2)^+$	560.7	3/2+	[M1+E2]		1.3 8	α(K)=1.0 6; α(L)=0.23 18; α(M)=0.04 4; α(N+)=0.007 6 α(N)=0.007 6
112.51	0.84	673.2	1/2+	560.7	3/2+	[M1+E2]		0.6 4	$\alpha(N)=0.007$ ° $\alpha(L)=0.09$ 7; $\alpha(M)=0.018$ 13; $\alpha(N+)=0.0029$ 20 $\alpha(N)=0.0020$ 20
155.38	9.8	644.6	7/2-	489.2	11/2-	E2		0.289	$\alpha(N)=0.0029\ 20$ $\alpha(K)\exp=0.235\ 21\ (1970Ka13)$ $\alpha(K)=0.238\ 4;\ \alpha(L)=0.0423\ 6;\ \alpha(M)=0.00808\ 12;$ $\alpha(N+)=0.001290\ 18$ $\alpha(N)=0.001290\ 18$
159.0	0.75	1088.1	3/2-	929.1	(5/2+)	[E1]		0.0405	$\alpha(N)=0.001250 \ 10^{-10}$ $\alpha(K)=0.0354 \ 5; \ \alpha(L)=0.00420 \ 6; \ \alpha(M)=0.000783 \ 11; \ \alpha(N+)=0.0001301 \ 19 \ \alpha(N)=0.0001301 \ 19$
182.92	8.6	489.2	11/2-	306.3	7/2+	M2		0.453	$\alpha(N)=0.00130119$ $\alpha(K)\exp=0.405(1970Ka13)$ $\alpha(K)=0.3836; \alpha(L)=0.05678; \alpha(M)=0.0108716;$ $\alpha(N+)=0.001823$ $\alpha(N)=0.001823$
202.21	0.7	644.6	7/2-	442.3	(7/2)+	[E1+M2]		0.17 15	$\alpha(N)=0.00162$ (M)=0.001 19; $\alpha(M)=0.004$ 4; $\alpha(N+)=0.0007$ 6 $\alpha(N)=0.0007$ 6
216.1	0.33	560.7	3/2+	344.6	1/2+	[M1+E2]		0.068 23	$\alpha(\mathbf{N}) = 0.001 \ \delta$; $\alpha(\mathbf{L}) = 0.008 \ 4$; $\alpha(\mathbf{M}) = 0.0016 \ 7$; $\alpha(\mathbf{N}+) = 0.00026 \ 11$ $\alpha(\mathbf{N}) = 0.00026 \ 11$
270.5 280.54	0.03 744	921.2 280.5	(1/2 ⁺ to 5/2 ⁺) 3/2 ⁺	650.8 0.0	(3/2) ⁺ 5/2 ⁺	M1+E2	+0.143 7	0.0238	$\alpha(K) = 0.0207 \ 3; \ \alpha(L) = 0.00249 \ 4; \ \alpha(M) = 0.000469 \ 7; \alpha(N+) = 7.89 \times 10^{-5} \ 12 \alpha(N) = 7.89 \times 10^{-5} \ 12 Mult.: \ A_{22} = 0.156 \ 8, \ A_{44} = 0.031 \ 9 \ (1983Si08). \delta: \ 0.178 \ 14 \ in \ 1983Si08. \alpha(K) exp = 0.0209 \ 13 \ (1970Ka13).$
284.8	2.3	727.3	5/2+	442.3	$(7/2)^+$	M1		0.0226	α (K)exp=0.0162 23 (1970Ka13) α (K)=0.0197 3; α (L)=0.00236 4; α (M)=0.000443 7;

 $^{105}_{46}\mathrm{Pd}_{59}$ -3

					^{105}A	g ε decay (4	41.29 d)	1996Me17,197	70Ka13 (continued)
							γ (¹⁰⁵ Pd) (continued)	
E _γ ‡	I_{γ} ^{‡@}	E_i (level)	\mathbf{J}_i^π	E_f	J_f^{π}	Mult.#	δ#	α^{\dagger}	Comments
289.37	2.9	962.5	(1/2,3/2)+	673.2	1/2+	M1		0.0217	$\alpha(N+)=7.47\times10^{-5} 11$ $\alpha(N)=7.47\times10^{-5} 11$ $\alpha(K)=0.0147 17 (1970Ka13)$ $\alpha(K)=0.0189 3; \alpha(L)=0.00226 4; \alpha(M)=0.000425 6;$ $\alpha(K)=0.717\times10^{-5} 10$
306.30	18.3	306.3	7/2+	0.0	5/2+	M1+E2	+0.055 2	0.0188	$\alpha(N)=7.17\times10^{-5} \ 10$ $\alpha(N)=7.17\times10^{-5} \ 10$ $\alpha(K)=0.01640 \ 23; \ \alpha(L)=0.00196 \ 3; \ \alpha(M)=0.000368 \ 6; \ \alpha(N+)=6.20\times10^{-5} \ 9$ $\alpha(N)=6.20\times10^{-5} \ 9$
311.74	1.9	962.5	(1/2,3/2)+	650.8	(3/2)+	M1		0.0179	Mult.: $A_{22}=-0.064 I/$, $A_{44}=-0.081 24$ (1983S108); Other: $A_{22}=-0.200 33$, $A_{44}=0.043 7I$ (1977Ba32). Mult.: $\alpha(K)\exp=0.0142 I4$ (1970Ka13). $\delta: 0.02 4$ (1983S108), $-0.39 + I3 - 6$ from $\gamma\gamma(\theta)$ in 1977Ba32. $\alpha(K)\exp=0.0096 I4$ (1970Ka13) $\alpha(K)=0.01566 22$; $\alpha(L)=0.00187 3$; $\alpha(M)=0.000351 5$; $\alpha(N+)=5.92\times10^{-5} 9$
319.24	106	319.2	5/2+	0.0	5/2+	M1+E2	+0.103 8	0.01697	$\alpha(N)=5.92\times10^{-5} 9$ $\alpha(K)=5.92\times10^{-5} 9$ $\alpha(K)=0.014 9 (1970 \text{Ka13})$ $\alpha(K)=0.01481 21; \ \alpha(L)=0.001769 25; \ \alpha(M)=0.000332 5;$ $\alpha(N+)=5.60\times10^{-5} 8$
325.43	4.8	644.6	7/2-	319.2	5/2+	E1		0.00559 8	$\alpha(N)=5.60 \times 10^{-5} 8$ Mult.: A ₂₂ =-0.157 8; A ₄₄ =0.026 11 (1983Si08). δ : Also, -0.007 20 (1983Si08), -0.16 3 from $\gamma\gamma(\theta)$ in 1977Ba32; +0.137 (9) from $\gamma\gamma(\theta)$ in 1981Al19; $\alpha(K)\exp=0.0043 8$ (1970Ka13) $\alpha=0.00559 8$; $\alpha(K)=0.00489 7$; $\alpha(L)=0.000571 8$; $\alpha(M)=0.0001067$
328.61	4.9	673.2	1/2+	344.6	1/2+	(M1)		0.01570	$\begin{array}{l} & r_{15}; \ \alpha(\mathrm{N}+)=1.79\times10^{-5} \ 3\\ & \alpha(\mathrm{N})=1.79\times10^{-5} \ 3\\ & \alpha(\mathrm{K})\exp=0.0084 \ 9 \ (1970\mathrm{Ka13})\\ & \alpha(\mathrm{K})=0.01371 \ 20; \ \alpha(\mathrm{L})=0.001632 \ 23; \ \alpha(\mathrm{M})=0.000307 \ 5;\\ & \alpha(\mathrm{N}+)=5 \ 17\times10^{-5} \ 8 \end{array}$
331.58	98.6	650.8	(3/2)+	319.2	5/2+	M1+E2	-0.084 7	0.01539	$\alpha(N)=5.17\times10^{-5} 8$ $\alpha(K)=0.01343 \ 19; \ \alpha(L)=0.001602 \ 23; \ \alpha(M)=0.000301 \ 5;$ $\alpha(N+)=5.07\times10^{-5} 8$ Mult.: A ₂₂ =-0.104 11, A ₄₄ =-0.10 10 (1977Ba32); Also $\alpha(K)\exp=0.0122 \ 8 \ (1970Ka13).$ $\delta: -0.084 \ 7 \ from \ \gamma - \gamma(\theta) \ in \ 1983Si08, \ and \ -0.062 \ 9 \ from \ \gamma - \gamma(\theta) \ in \ 1983Si08, \ and \ -0.062 \ 9 \ from \ \gamma - \gamma(\theta) \ in \ 1983Si08, \ and \ -0.062 \ 9 \ from \ \gamma - \gamma(\theta) \ in \ 1983Si08, \ and \ -0.062 \ 9 \ from \ \gamma - \gamma(\theta) \ in \ 1983Si08, \ and \ -0.062 \ 9 \ from \ \gamma - \gamma(\theta) \ in \ 1983Si08, \ and \ -0.062 \ 9 \ from \ \gamma - \gamma(\theta) \ in \ 1983Si08, \ and \ -0.062 \ 9 \ from \ \gamma - \gamma(\theta) \ in \ 1983Si08, \ and \ -0.062 \ 9 \ from \ \gamma - \gamma(\theta) \ in \ 1983Si08, \ and \ -0.062 \ 9 \ from \ \gamma - \gamma(\theta) \ in \ 1983Si08, \ and \ -0.062 \ 9 \ from \ \gamma - \gamma(\theta) \ in \ 1983Si08, \ and \ -0.062 \ 9 \ from \ \gamma - \gamma(\theta) \ in \ 1983Si08, \ and \ -0.062 \ 9 \ from \ \gamma - \gamma(\theta) \ in \ 1983Si08, \ and \ -0.062 \ 9 \ from \ \gamma - \gamma(\theta) \ in \ 1983Si08, \ and \ -0.062 \ 9 \ from \ \gamma - \gamma(\theta) \ in \ 1983Si08, \ and \ -0.062 \ 9 \ from \ \gamma - \gamma(\theta) \ in \ 1983Si08, \ and \ -0.062 \ 9 \ from \ \gamma - \gamma(\theta) \ in \ 1983Si08, \ and \ -0.062 \ 9 \ from \ \gamma - \gamma(\theta) \ in \ 1983Si08, \ and \ -0.062 \ 9 \ from \ \gamma - \gamma(\theta) \ in \ 1983Si08, \ and \ -0.062 \ 9 \ from \ \gamma - \gamma(\theta) \ in \ 1983Si08, \ and \ -0.062 \ 9 \ from \ \gamma - \gamma(\theta) \ in \ 1983Si08, \ and \ -0.062 \ 9 \ from \ \gamma - \gamma(\theta) \ in \ 1983Si08, \ and \ -0.062 \ 9 \ from \ \gamma - \gamma(\theta) \ in \ 1983Si08, \ and \ -0.062 \ 9 \ from \ \gamma - \gamma(\theta) \ in \ 1983Si08, \ and \ -0.062 \ 9 \ from \ \gamma - \gamma(\theta) \ in \ 1983Si08 \ and \ -0.062 \ 9 \ from \ \gamma - \gamma(\theta) \ in \ 1983Si08 \ and \ -0.062 \ from \ \gamma - \gamma(\theta) \ in \ 1983Si08 \ and \ -0.062 \ 9 \ from \ \gamma - \gamma(\theta) \ in \ 1983Si08 \ and \ -0.062 \ not \ $
344.51 ^{&} 344.61	1000	650.8 344.6	(3/2) ⁺ 1/2 ⁺	306.3 0.0	7/2 ⁺ 5/2 ⁺	E2		0.0188	α (K)exp=0.0163 <i>10</i> (1970Ka13) α (K)=0.01611 <i>23</i> ; α (L)=0.00219 <i>3</i> ; α (M)=0.000413 <i>6</i> ;

4

From ENSDF

 $^{105}_{46}\mathrm{Pd}_{59}\text{-}4$

					1	05 Ag ε decay	(41.29 d)	1996Me17,1	970Ka13 (continued)
							$\gamma(^{105}$	Pd) (continued	<u>I)</u>
E _γ ‡	Ι _γ ‡@	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	α^{\dagger}	Comments
353.8	0.2	673.2	1/2+	319.2 5	/2+	[E2]		0.01725	$\begin{aligned} &\alpha(\text{N}+)=6.80\times10^{-5} \ 10\\ &\alpha(\text{N})=6.80\times10^{-5} \ 10\\ &\alpha(\text{K})=0.01482 \ 21; \ \alpha(\text{L})=0.00200 \ 3; \ \alpha(\text{M})=0.000377 \ 6;\\ &\alpha(\text{N}+)=6.22\times10^{-5} \ 9 \end{aligned}$
360.72	11.3	1088.1	3/2-	727.3 5	/2+	E1		0.00427 6	$\alpha(N) = 6.22 \times 10^{-5} \ 9$ $\alpha(K) \exp = 0.0039 \ 4 \ (1970 \text{Ka} 13)$ $\alpha = 0.00427 \ 6; \ \alpha(K) = 0.00374 \ 6; \ \alpha(L) = 0.000436 \ 6; \ \alpha(M) = 8.15 \times 10^{-5}$ $42; \ \alpha(N) = 0.1265 \times 10^{-5} \ 20$
370.28	17.6	650.8	(3/2)+	280.5 3	/2+	M1+E2	0.11 3	0.01167	$12; \alpha(N+)=1.365\times10^{-5} 20$ $\alpha(N)=1.365\times10^{-5} 20$ $\alpha(K)=0.01020 \ 15; \ \alpha(L)=0.001212 \ 18; \ \alpha(M)=0.000228 \ 4;$ $\alpha(N+)=3.84\times10^{-5} \ 6$ $\alpha(N)=3.84\times10^{-5} \ 6$ Mult: $A_{1}=0.072 \ 12 \ A_{2}=0.001 \ 16 \ (10825:08); \ Other;$
392.73	47.8	673.2	1/2+	280.5 3	/2+	M1+E2	+0.06 3	0.01006 <i>15</i>	Mult: A_{22} =-0.072 12, A_{44} =-0.001 16 (19855108); Other: A_{22} =-0.098 16 A_{44} =-0.030 45 (1977Ba32); Also α (K)exp=0.0094 8 (1970Ka13). δ : Also: 0.000 3 (1977Ba32). α (K)=0.00879 13; α (L)=0.001042 15; α (M)=0.000196 3; α (N+)=3.30×10 ⁻⁵ 5 α (N)=3.30×10 ⁻⁵ 5 Mult: A_{22} =0.182 17, A_{44} =0.020 25 (1983Si08); Other: 0.149 13, -0.014 20 (1977Ba32); Also α (K)exp=0.0083 6 (1970Ka13).
401.75	4.6	962.5	(1/2,3/2)+	560.7 3	/2+	M1		0.00950 14	δ: 0.05 4 in 1983Si08 from $\gamma - \gamma(\theta)$, $-0.84 + 3 - 17$ from $\gamma \gamma(\theta)$ in 1977Ba32; and $+0.10$ 7 from $\gamma - \gamma(\theta)$ in 1981Al19. α (K)exp=0.0065 10 (1970Ka13) α =0.00950 14; α (K)=0.00831 12; α (L)=0.000983 14; α (M)=0.000185
408.08	1.0	727.3	5/2+	319.2 5	/2+	M1(+E2)		0.0101 10	$\alpha(N)=3.11\times10^{-5} 5$ $\alpha(K)=0.0070 \ 25 \ (1970Ka13)$ $\alpha(K)=0.0087 \ 8; \ \alpha(L)=0.00109 \ 15; \ \alpha(M)=0.00021 \ 3;$ $\alpha(N+.)=3.4\times10^{-5} \ 5$
414.85	7.2	1088.1	3/2-	673.2 1	/2+	(E1)		0.00299 5	$\alpha(N)=3.4\times10^{-5} 5$ $\alpha(K)=0.0040 \ 8 \ (1970Ka13)$ $\alpha=0.00299 \ 5; \ \alpha(K)=0.00262 \ 4; \ \alpha(L)=0.000305 \ 5; \ \alpha(M)=5.69\times10^{-5} \ 8;$ $\alpha(N+)=9 \ 55\times10^{-6} \ 14$
421.03	2.9	727.3	5/2+	306.3 7	/2+	M1(+E2)		0.0092 8	$ \begin{array}{l} \alpha(\mathrm{N}) = 9.55 \times 10^{-6} \ 14 \\ \alpha(\mathrm{K}) = 9.0069 \ 17 \ (1970\mathrm{Ka13}) \\ \alpha = 0.0092 \ 8; \ \alpha(\mathrm{K}) = 0.0080 \ 7; \ \alpha(\mathrm{L}) = 0.00100 \ 13; \ \alpha(\mathrm{M}) = 0.000188 \ 25; \\ \alpha(\mathrm{N}+) = 3.1 \times 10^{-5} \ 4 \end{array} $
437.30	6.9	1088.1	3/2-	650.8 (3	3/2)+	E1		0.00263 4	$\begin{array}{l} \alpha(\mathrm{N}) = 3.1 \times 10^{-5} \ 4 \\ \alpha(\mathrm{K}) \exp = 0.0029 \ 6 \ (1970 \mathrm{Ka13}) \\ \alpha = 0.00263 \ 4; \ \alpha(\mathrm{K}) = 0.00230 \ 4; \ \alpha(\mathrm{L}) = 0.000267 \ 4; \ \alpha(\mathrm{M}) = 4.99 \times 10^{-5} \ 7; \end{array}$

S

 $^{105}_{46}\mathrm{Pd}_{59}$ -5

γ ⁽¹⁰⁵ Pd) (continued)									
E _γ ‡	Ι _γ ‡@	E _i (level)	${ m J}^{\pi}_i$	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	δ#	α^{\dagger}	Comments	
442.2	11.4	442.3	(7/2)+	0.0 5/2+	M1+E2	-0.23 6	0.00756 11	$\begin{aligned} &\alpha(\text{N}+)=8.37\times10^{-6}\ 12\\ &\alpha(\text{N})=8.37\times10^{-6}\ 12\\ &\alpha=0.00756\ 11;\ \alpha(\text{K})=0.00661\ 10;\ \alpha(\text{L})=0.000784\ 13;\\ &\alpha(\text{M})=0.0001472\ 23;\ \alpha(\text{N}+)=2.48\times10^{-5}\\ &\alpha(\text{N})=2.48\times10^{-5}\ 4\end{aligned}$	
443.44	259	1088.1	3/2-	644.6 7/2-	E2		0.00853 12	E _γ : 422.2γ in 1996Me17 assumed by the evaluators to be a typo. α (K)exp=0.0075 5 (1970Ka13) α =0.00853 12; α (K)=0.00737 11; α (L)=0.000954 14; α (M)=0.000180 3; α (N+)=2.98×10 ⁻⁵ 5	
446.8	2.4	727.3	5/2+	280.5 3/2+	M1+E2	0.9 +9-5	0.0078 4	$\alpha(N)=2.98 \times 10^{-5} 5$ $\alpha=0.0078 \ 4; \ \alpha(K)=0.0068 \ 3; \ \alpha(L)=0.00083 \ 6;$ $\alpha(M)=0.000157 \ 11; \ \alpha(N+)=2.62 \times 10^{-5} \ 17$ $\alpha(N)=2.62 \times 10^{-5} \ 17$	
486.8	0.11	929.1	(5/2+)	442.3 (7/2)+	[M1+E2]		0.0062 3	Mult.: $A_{22}=0.043 \ 32$; $A_{44}=0.053 \ 47 \ (1983Si08)$. $\alpha=0.0062 \ 3$; $\alpha(K)=0.00540 \ 21$; $\alpha(L)=0.00066 \ 6$; $\alpha(M)=0.000125 \ 10$; $\alpha(N+)=2.08\times10^{-5} \ 15$	
527.34	2.6	1088.1	3/2-	560.7 3/2+	E1		0.001673 24	$\begin{array}{l} \alpha(N)=2.08\times10^{-7}15\\ \alpha(K)\exp=0.0015\ 4\ (1970Ka13)\\ \alpha=0.001673\ 24;\ \alpha(K)=0.001466\ 21;\ \alpha(L)=0.0001694\ 24;\\ \alpha(M)=3.17\times10^{-5}\ 5;\ \alpha(N+)=5.32\times10^{-6}\\ \alpha(M)=3.17\times10^{-6}\ 5;\ \alpha(N+)=5.32\times10^{-6} \end{array}$	
560.79	13.5	560.7	3/2+	0.0 5/2+	M1+E2		0.00427 7	$\alpha(N)=5.32 \times 10^{-6} 8$ $\alpha(K)\exp=0.0038 4 (1970Ka13)$ $\alpha=0.00427 7; \ \alpha(K)=0.00372 6; \ \alpha(L)=0.000451 18;$ $\alpha(M)=8.5 \times 10^{-5} 4; \ \alpha(N+)=1.42 \times 10^{-5} 5$ $\alpha(N)=1.42 \times 10^{-5} 5$	
564.4	0.13 4	1125.2	$(1/2^+ \text{ to } 7/2^+)$	560.7 3/2+					
576.7 610.0	0.6 0.2	921.2 929.1	$(1/2^+ \text{ to } 5/2^+)$ $(5/2^+)$	344.6 1/2 ⁺ 319.2 5/2 ⁺	[M1+E2]		0.00345 6	α =0.00345 6; α (K)=0.00301 6; α (L)=0.000361 8; α (M)=6.79×10 ⁻⁵ 16; α (N+)=1.139×10 ⁻⁵ 22 α (N)=1.139×10 ⁻⁵ 22	
617.90	28.6 <i>3</i>	962.5	(1/2,3/2)+	344.6 1/2+	M1(+E2)		0.00334 6	$\alpha(K) = 0.00306 225 (1970 Ka13)$ $\alpha = 0.00334 6; \alpha(K) = 0.00291 6; \alpha(L) = 0.000350 7;$ $\alpha(M) = 6.56 \times 10^{-5} 14; \alpha(N+) = 1.101 \times 10^{-5} 19$ $\alpha(M) = 0.00216 + 0.00291 + 0.00291 + 0.000350 = 0$	
640.5 644.63	0.7 242	921.2 644.6	(1/2 ⁺ to 5/2 ⁺) 7/2 ⁻	280.5 3/2 ⁺ 0.0 5/2 ⁺	E1+M2	-0.016 4	0.001061 15	$\begin{aligned} &\alpha(N)=1.101\times10^{-5} 19 \\ &\alpha(K)\exp=0.00090 \ 6 \ (1970Ka13) \\ &\alpha=0.001061 \ 15; \ \alpha(K)=0.000930 \ 13; \ \alpha(L)=0.0001070 \ 15; \\ &\alpha(M)=2.00\times10^{-5} \ 3; \ \alpha(N+)=3.37\times10^{-6} \\ &\alpha(N)=3.37\times10^{-6} \ 5 \\ &\delta: \ -0.020 \ +5-6 \ \text{from} \ \gamma\gamma(\theta) \ \text{in} \ 1977\text{Ba32}; \ \text{Other:} \ -0.012 \end{aligned}$	

6

					Age	uecay (41.29	u) 1990	e17,1970Ka15 (continued)
							$\gamma(^{105}\text{Pd})$ (cont	inued)	
E_{γ}^{\ddagger}	Ι _γ ‡@	E _i (level)	${f J}^\pi_i$	E_f	J_f^{π}	Mult. [#]	δ #	α^{\dagger}	Comments
									from $\gamma\gamma(\theta)$ in 1981Al19.
646.00	1.6	1088.1	3/2-	442.3	$(7/2)^+$	[M2]		0.00876 13	Mult.: $A_{22} = -0.170 5$, 0.001 <i>1</i> (1977Ba32). $\alpha = 0.00876 13$; $\alpha(K) = 0.00762 11$; $\alpha(L) = 0.000940 14$;
									$\alpha(M) = 0.000177423; \alpha(N+) = 2.99 \times 10^{-5}$
650 78	60.0	650.8	$(3/2)^+$	0.0	$5/2^{+}$	M1+E2		0.00293.7	$\alpha(K) = 2.99 \times 10^{-10} \text{ J}$ $\alpha(K) = 0.00264 \ 18 \ (1970 \text{ Kal3})$
050.70	00.0	050.0	(3/2)	0.0	5/2	1111122		0.002937	$\alpha = 0.00293$ 7; $\alpha(K) = 0.00256$ 7; $\alpha(L) = 0.000306$ 5; $\alpha(M) = 5.74 \times 10^{-5}$ 9; $\alpha(N+) = 9.64 \times 10^{-6}$ 14
									$\alpha(N) = 9.64 \times 10^{-6} 14$
673.24	23.3	673.2	$1/2^{+}$	0.0	$5/2^{+}$	E2		0.00263 4	$\alpha(K) \exp = 0.00224 \ I9 \ (1970 Ka13)$
									α =0.00263 4; α (K)=0.00229 4; α (L)=0.000280 4;
									$\alpha(M)=5.26\times10^{-5}$ 8; $\alpha(N+)=8.79\times10^{-6}$ 13
									$\alpha(N) = 8.79 \times 10^{-6} \ 13$
681.94	1.8	962.5	$(1/2,3/2)^+$	280.5	3/2+	M1(+E2)		0.00261 8	α (K)exp=0.0034 8 (1970Ka13)
									$\alpha = 0.00261 \ 8; \ \alpha(\mathbf{K}) = 0.00228 \ 8; \ \alpha(\mathbf{L}) = 0.000272 \ 4;$
									$\alpha(\text{IVI})=5.10\times10^{\circ}$ $\delta; \alpha(\text{IN}+)=\delta.5/\times10^{\circ}$ 15
727 28	3.5	727 3	5/2+	0.0	$5/2^{+}$	M1(+E2)		0.00223.9	$\alpha(N) = 0.57 \times 10^{-1.5}$ $\alpha(K) \exp(-0.0028) 9 (1970 Ka13)$
121.20	5.5	121.5	5/2	0.0	5/2	1111(+122)		0.00225 9	$\alpha = 0.00223 \ 9; \ \alpha(K) = 0.00195 \ 8; \ \alpha(L) = 0.000231 \ 5;$
									$\alpha(M) = 4.34 \times 10^{-5} 9; \alpha(N+) = 7.30 \times 10^{-6} 18$
									$\alpha(N) = 7.30 \times 10^{-6} \ 18$
743.45	12.7	1088.1	3/2-	344.6	$1/2^{+}$	E1		0.000778 11	α(K)exp=0.00070 11 (1970Ka13)
									$\alpha = 0.000778 \ 11; \ \alpha(K) = 0.000683 \ 10; \ \alpha(L) = 7.83 \times 10^{-5} \ 11;$
									$\alpha(M)=1.463\times10^{-5} 21; \alpha(N+)=2.46\times10^{-6}$
769.0	0.24	1000 1	2/2-	210.2	5/2+	IE1 - M21		0.0021.24	$\alpha(N) = 2.46 \times 10^{-6} 4$
/08.9	0.24	1008.1	5/2	519.2	5/2	[E1+M2]		0.0051 24	$\alpha = 0.0031 \ 24; \ \alpha(\mathbf{N}) = 0.0027 \ 21; \ \alpha(\mathbf{L}) = 0.0003 \ 3;$ $\alpha(\mathbf{M}) = 6 \ \mathbf{E} = 5 \ 5; \ \alpha(\mathbf{N} + -1) = 1.0 \times 10^{-5} \ 8$
									$\alpha(N)=1.0\times10^{-5} 8$
807.57	27.5 17	1088.1	3/2-	280.5	$3/2^{+}$	E1(+M2)	0.03 +4-3	0.000659 19	$\alpha(K) \exp = 0.00061 7 (1970 Ka13)$
			,		,				α =0.000659 19; α (K)=0.000579 17; α (L)=6.62×10 ⁻⁵ 20;
									$\alpha(M)=1.24\times10^{-5}$ 4; $\alpha(N+)=2.08\times10^{-6}$ 7
									$\alpha(N)=2.08\times10^{-6}$ 7
									Mult.: $A_{22} = -0.108 \ 15$; $A_{44} = -0.2 \ 2 \ (1983Si08)$.
Q11 C	0.6	1125.2	$(1/2^{+} t_{2} 7/2^{+})$	200 F	2/2+				δ : 0.03 +4-3 in 19838108, based on $\gamma\gamma(\theta)$.
044.0 921 2	0.0	921.2	$(1/2 + to 7/2^+)$ $(1/2^+ to 5/2^+)$	200.3	$5/2^+$				
929.1	0.33	929.1	$(5/2^+)$	0.0	$5/2^+$	[M1+E2]		0.00126 7	α =0.00126 7; α (K)=0.00110 7; α (L)=0.000129 6;
									$\alpha(M)=2.42\times10^{-5}$ 11; $\alpha(N+)=4.07\times10^{-6}$ 20
									$\alpha(N)=4.07\times10^{-6}\ 20$
962.45	2.7	962.5	$(1/2,3/2)^+$	0.0	5/2+	M1(+E2)		0.00116 7	α (K)exp=0.00119 23 (1970Ka13)
									α =0.00116 /; α (K)=0.00102 6; α (L)=0.000119 6;

7

 $^{105}_{46}\mathrm{Pd}_{59}$ -7

From ENSDF

 $^{105}_{46}\mathrm{Pd}_{59}$ -7

γ (¹⁰⁵ Pd) (continued)											
E_{γ}^{\ddagger}	I_{γ} ^{‡@}	E _i (level)	\mathbf{J}_i^π	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.#	α^{\dagger}	Comments				
							$\alpha(M)=2.23\times10^{-5}$ 11; $\alpha(N+)=3.75\times10^{-6}$ 19				
1088.05	86.	1088.1	3/2-	0.0 5/2+	E1	0.000366 6	$\alpha(N)=3.75\times10^{-6}$ 19 $\alpha(K)\exp=0.000299$ 22 (1970Ka13)				
			·				α =0.000366 6; α (K)=0.000322 5; α (L)=3.66×10 ⁻⁵ 6; α (M)=6.83×10 ⁻⁶ 10;				
							$\alpha(N+)=1.152\times10^{-6} I7$ $\alpha(N)=1.152\times10^{-6} I7$				
125.2	0.27	1125.2	$(1/2^+ \text{ to } 7/2^+)$	0.0 5/2+							

[‡] From 1996Me17. [#] Unless otherwise noted from 1983Si08, based on $\gamma\gamma(\theta)$ from DCO measurments. [@] For absolute intensity per 100 decays, multiply by 0.042 *4*. [&] Placement of transition in the level scheme is uncertain.

6-⁶⁵Pd⁹⁷

6-⁶⁵pd⁹⁷₉₇