¹⁰⁵Rh β^- decay (35.3 h) 2010Kr05,1965Pi01

	History			
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	S. Lalkovski, J. Timar and Z. Elekes	NDS 161, 1 (2019)	1-Apr-2019	

Parent: ¹⁰⁵Rh: E=0.0; $J^{\pi}=7/2^+$; $T_{1/2}=35.341$ h *19*; $Q(\beta^-)=566.7$ 24; $\%\beta^-$ decay=100.0

- ¹⁰⁵Rh-T_{1/2}: weighted average of 35.357 h 37 and 35.319 h 24, from γ (t) measurements performed respectively at room temperature and at T=19 K in 2009Go29, 35.47 h 8 in 1967ko?? and 35.4 h *I* 1965Pi01; Others: 35.88 h 2 (1962Br15);
- 2010Kr05: Facility: Oregon State University TRIGA reactor; Source: from a natural 5-20 mg Ru (104 Ru abundance is 18.6%) metal and RuO₂ powder samples, irradiated with thermal and epithermal neutrons; Detectors: flux monitors, one HPGe detector; Measured: γ , E γ , I γ .
- 2005Mo07: Facility: Kyoto University Research Reactor Institute; Source: chemically separated from irradiated 0.1mg Ru sample enriched to 99.21% in ¹⁰⁴Ru; Detectors: $4\pi\beta$, one HPGe detector; Measured: β - γ coinc., I β , I γ , E γ ; Deduced: ¹⁰⁵Ru level scheme, I γ normalization.
- 1967Sc01: Facility: McMaster nuclear reactor; Source: chemically separated from irradiated 100 μ g ¹⁰⁴Ru target; Detectors: two NaI(Tl), several Ge(Li), magnetic spectrometer ($\Delta p/p=0.5\%$) and a lens spectrometer ($\Delta p/p\approx3\%$); Measured: γ , β , β - γ and γ - γ coinc., $E\gamma$, $I\gamma$, $E\beta$, $I\beta$, I(ce).
- 1965Pi01: Facility: Univ. Michigan Ford Nuclear Reactor; Source: chemically separated from irradiated ¹⁰⁵Rh sample, enriched to 99.8% in ¹⁰⁵Rh; Detectors: NaI(Tl), Ge(Li), proportional counters, magnets and Pilot β scintillator; Measured: β , ce, γ , β - β , β - γ and γ - γ coinc.; Deduced: ¹⁰⁵Pd level scheme, α (K)exp.
- 1962Me07: Facility: Oak Ridge National Lab. Research Reactor; Source: mass-separated from 5-10 mg thick target eneriched to 98.16% in ¹⁰⁴Ru and exposed in a slow neutron flux 2.5×10^{14} n/cm².s; Detectors: ultracentrifuge, Pd and Ag scatterers, two PMT's and a mirror, one NaI shielded by Pb in front; Measured: γ , $\gamma(\theta)$, E γ ; Deduced: δ , T_{1/2}.

Others: 2009Go29, 1977Wi10, 1976Ba39, 1974Be71, 1969Od01, 1964Ka23, 1962Br15, and 1967ko?? for Kobayashi in J.Inorg.Nucl.Chem.29 (1967) 1374.

¹⁰⁵Pd Levels

$J^{\pi \ddagger}$	T _{1/2}	Comments
5/2+	stable	
$3/2^{+}$		
$7/2^{+}$		
$5/2^{+}$	40 ps 10	$T_{1/2}$: from 250 $\beta^{-}315\gamma(t)$ in 1974Be71; Others: 51 ps 3 in 1962Me07.
$(7/2)^+$		
		$\begin{array}{c} J^{\pi \ddagger} & T_{1/2} \\ \hline 5/2^+ & \text{stable} \\ 3/2^+ \\ 7/2^+ \\ 5/2^+ & 40 \text{ ps } 10 \\ (7/2)^+ \end{array}$

[†] From a least-squares fit to $E\gamma$.

[‡] From the Adopted Levels.

β^- radiations

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments	
(124.3 24)	442.418	0.0355 8	6.91 <i>3</i>	av Eβ=33.04 68	
(247.5 24)	319.233	17.8 6	5.152 20	av E β =69.72 75	
(260.4 24)	306.311	4.75 10	5.797 16	av E β =73.79 76	
(286.2 [‡] 24)	280.522	< 0.01	>8.6	av Eβ=81.99 78	
(566.7 24)	0.0	77.9 5	5.710 7	av Eβ=179.31 89	

[†] Absolute intensity per 100 decays.

[‡] Existence of this branch is questionable.

From ENSDF

¹⁰⁵Rh β^- decay (35.3 h) 2010Kr05,1965Pi01 (continued)

$\gamma(^{105}\text{Pd})$

I γ normalization: from the intensity balance to the 306-keV level; I β =4.76 5 in 2005Mo07 and I(γ +ce)_{306 γ}.

E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger @}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	α^{\dagger}	Comments
38.77 7	0.135 2	319.233	5/2+	280.522	3/2+	M1(+E2)		24 18	$\alpha(K)=12$ 7; $\alpha(L)=10$ 10; $\alpha(M)=1.9$ 18; $\alpha(N+)=0.3$
280.523 10	0.905 9	280.522	3/2+	0.0	5/2+	M1+E2	+0.143 7	0.0238	$\begin{aligned} &\alpha(N)=0.3 \ 3\\ &\alpha(N)=0.0200 \ 3 \ (1965Pi01)\\ &E_{\gamma}: \ 38.72 \ 3 \ in \ 1972De67;\\ &I_{\gamma}: \ from intensity balance to\\ the \ 280-keV \ level.\\ &\alpha(K)exp: \ 5.8 \ 6 \ (1965Pi01).\\ &\alpha(K)=0.0207 \ 3;\\ &\alpha(L)=0.00249 \ 4;\\ &\alpha(M)=0.000469 \ 7;\\ &\alpha(M)=0.000469 \ 7;\\ &\alpha(N+)=7.89\times10^{-5} \ 12\\ &\alpha(N)=7.89\times10^{-5} \ 12\\ &\alpha(N)=7.81\times10^{-5} \ 11\end{aligned}$
									δ : +0.132 8 (1977Wi10), +0.07 7 (1976Ba39). α (K)exp=0.020 4 (1965Bi01)
306.311 <i>10</i>	27.6 3	306.311	7/2+	0.0	5/2+	M1+E2	+0.055 2	0.0188	$\begin{array}{c} (19031101).\\ \alpha(K)=0.01640\ 23;\\ \alpha(L)=0.00196\ 3;\\ \alpha(M)=0.000368\ 6; \end{array}$
319.231 10	100.0 <i>10</i>	319.233	5/2+	0.0	5/2+	M1+E2	+0.103 8	0.01697	$\alpha(N+)=6.20\times10^{-5} 9$ $\alpha(N)=6.20\times10^{-5} 9$ δ : Other: +0.055 2 (1976Ba39) and 0.06 1 (1977Wi10). $\alpha(K)$ exp: 0.016 2 from Ice/I γ and comparison with low energy I β (1964Ka23). $\alpha(K)$ exp=0.013 2; K/L=8 1 $\alpha(K)$ =0.01481 21; $\alpha(L)$ =0.001769 25; $\alpha(M)$ =0.000332 5; $\alpha(N+)$ =5.60×10 ⁻⁵ 8 $\alpha(N)$ =5.60×10 ⁻⁵ 8 δ : from the adopted gammas: Others: +0.11 1
442.417 10	0.210 2	442.418	(7/2)+	0.0	5/2+	M1+E2	-0.23 6	0.00756 <i>11</i>	gammas; Others: +0.11 <i>I</i> (1977Wi10), +0.091 <i>I3</i> or +1.35 <i>3</i> (1976Ba39), -0.11 (1962Me07). α (K)exp: From Ice/I γ and comparison with low-energy I β (1964Ka23). α =0.00756 <i>I1</i> ; α (K)=0.00660 <i>I0</i> ; α (L)=0.000783 <i>I2</i> ; α (M)=0.0001470 <i>23</i> ; α (M)=0.0001470 <i>23</i> ; α (N)=2.48×10 ⁻⁵ α (N)=2.48×10 ⁻⁵ <i>4</i> δ : From the adopted

$^{105}\mathbf{Rh}\,\beta^-$ decay (35.3 h) 2010Kr05,1965Pi01 (continued)

 $\gamma(^{105}\text{Pd})$ (continued)

E_i(level) E_{γ}^{\ddagger}

Comments

gammas; Others: -0.8 +7-4 (1976Ba39), -0.2 or -0.3 (1977Wi10).

[†] Additional information 1.
[‡] From 2010Kr05, unless otherwise noted.
[#] From the adopted gammas.
[@] For absolute intensity per 100 decays, multiply by 0.169 3.

¹⁰⁵Rh β^- decay (35.3 h) 2010Kr05,1965Pi01

Decay Scheme

