## <sup>105</sup>Nb $\beta^-$ decay (2.91 s) 1995Li13,1984Sh03

|                 | History                              |                   |                        |  |
|-----------------|--------------------------------------|-------------------|------------------------|--|
| Туре            | Author                               | Citation          | Literature Cutoff Date |  |
| Full Evaluation | S. Lalkovski, J. Timar and Z. Elekes | NDS 161, 1 (2019) | 1-Apr-2019             |  |

Parent: <sup>105</sup>Nb: E=0.0;  $J^{\pi}=(5/2^+)$ ;  $T_{1/2}=2.91$  s 5;  $Q(\beta^-)=7422$  10;  $\%\beta^-$  decay=100.0

1995Li13: Facility: JOSEPH the DIDO reactor at Kernforschungsanlage Julich, Germany; Source: <sup>105</sup>Nb from <sup>235</sup>U(n<sub>th</sub>,f);

Detectors: JOSEPH, one plastic scintillator, one conical BaF<sub>2</sub> scintillator, one Ge crystal; Measured:  $\beta$ - $\gamma$ - $\gamma$ (t), E $\gamma$ , Deduced: T<sub>1/2</sub> from centroid shift method and deconvolution; Also from the collaboration: 1991LiZV.

1984Sh03: Facilities: JOSEPH at the DIDO reactor at Kernforschungsanlage, Julich, Germany and LOHENGRIN at ILL Grenoble, France; Sources: <sup>105</sup>Nb from <sup>235</sup>U(n<sub>th</sub>,f); Detectors: JOSEPH and LOHENGRIN recoil separators, electrostatic and mechanical choppers, tape station, intrinsic Ge and Ge(Li) detectors; Measured: Bρ, x-rays, γ, x-γ coinc., γ-γ and γ-γ(θ) coinc., Eγ, Iγ, γ(t); Deduced: fission product mass number A, <sup>105</sup>Mo level scheme, T<sub>1/2</sub>; Also, from the same collaboration: 1983ShZY. Others: 1996Lh04, 1987Gr18, 1985Se02, 1984LhZZ, 1973Ho22.

## <sup>105</sup>Mo Levels

Level scheme is incomplete and unbalanced.

| E(level) <sup>†</sup> | J#‡                                      | T <sub>1/2</sub> # | Comments                                                                                                                                 |
|-----------------------|------------------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0                   | $(5/2^{-})$                              |                    | configuration: $v5/2^{-}[532]$ .                                                                                                         |
| 94.86 7               | $(7/2^{-})$                              | 0.48 ns 4          | T <sub>1/2</sub> : Other: 0.54 ns 25 and 0.54 ns 25 from centroid-shift method with Ge detectors in 1985Se02 and 1984LhZZ, respectively. |
| 232.86 8              | $(9/2^{-})$                              | 111 ps 10          |                                                                                                                                          |
| 246.73 8              | $(3/2^+)$                                | 0.30 ns 6          | configuration: $3/2^{+}[411]$ .                                                                                                          |
| 309.93 9              | $(5/2^+)$                                |                    |                                                                                                                                          |
| 332.14 20             | $(1/2^+)$                                |                    |                                                                                                                                          |
| 348.60 7              | $(5/2^+)$                                |                    |                                                                                                                                          |
| 377.70 12             | $(11/2^{-})$                             |                    |                                                                                                                                          |
| 396.75 12             | $(3/2^+)$                                | 0.53 ns 7          |                                                                                                                                          |
| 464.14 12             | $(7/2^+)$                                | 81 ps 12           |                                                                                                                                          |
| 507.80 15             | $(7/2^+)$                                | 0.08 ns 5          |                                                                                                                                          |
| 514.18 18             | $(3/2^{-} \text{ to } 9/2^{-})$          |                    |                                                                                                                                          |
| 524.69 15             | $(5/2^+)$                                | 0.10 ns 5          |                                                                                                                                          |
| 648.71 <i>16</i>      | (5/2 <sup>-</sup> to 11/2 <sup>-</sup> ) |                    |                                                                                                                                          |

<sup>†</sup> From a least-squares fit to  $E\gamma$ .

<sup>‡</sup> From the Adopted Levels.

<sup>#</sup> From  $\beta$ - $\gamma$ - $\gamma$ (t) coinc. in 1995Li13.

 $\gamma(^{105}\text{Mo})$ 

| $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\dagger}$ | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_f$  | $\mathbf{J}_{f}^{\pi}$ | $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\dagger}$ | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_f$  | ${ m J}_f^\pi$ |
|------------------------|------------------------|------------------------|----------------------|--------|------------------------|------------------------|------------------------|------------------------|----------------------|--------|----------------|
| 48.3 <i>3</i>          | 53                     | 396.75                 | $(3/2^+)$            | 348.60 | $(5/2^+)$              | 159.4 4                | 23 4                   | 507.80                 | $(7/2^+)$            | 348.60 | $(5/2^+)$      |
| 63.5 <i>3</i>          | 82                     | 309.93                 | $(5/2^+)$            | 246.73 | $(3/2^+)$              | 176.0 2                | 19 2                   | 524.69                 | $(5/2^+)$            | 348.60 | $(5/2^+)$      |
| 85.3 <i>3</i>          | 30 <i>3</i>            | 332.14                 | $(1/2^+)$            | 246.73 | $(3/2^+)$              | <sup>x</sup> 186.3 5   | 32                     |                        |                      |        |                |
| 94.8 <i>1</i>          | 258 13                 | 94.86                  | $(7/2^{-})$          | 0.0    | $(5/2^{-})$            | 192.5 2                | 43 <i>3</i>            | 524.69                 | $(5/2^+)$            | 332.14 | $(1/2^+)$      |
| 102.0 <i>1</i>         | 29 6                   | 348.60                 | $(5/2^+)$            | 246.73 | $(3/2^+)$              | 197.9 2                | 12 3                   | 507.80                 | $(7/2^+)$            | 309.93 | $(5/2^+)$      |
| 115.6 2                | 62                     | 464.14                 | $(7/2^+)$            | 348.60 | $(5/2^+)$              | 215.1 <i>3</i>         | 8 2                    | 309.93                 | $(5/2^+)$            | 94.86  | $(7/2^{-})$    |
| 137.9 <i>1</i>         | 100 4                  | 232.86                 | $(9/2^{-})$          | 94.86  | $(7/2^{-})$            | 217.2 4                | 72                     | 464.14                 | $(7/2^+)$            | 246.73 | $(3/2^+)$      |
| 144.8 <i>1</i>         | 82                     | 377.70                 | $(11/2^{-})$         | 232.86 | $(9/2^{-})$            | 231.2 4                | 2 1                    | 464.14                 | $(7/2^+)$            | 232.86 | $(9/2^{-})$    |
| 150.0 <i>1</i>         | 31 3                   | 396.75                 | $(3/2^+)$            | 246.73 | $(3/2^+)$              | 232.9 1                | 37 <i>3</i>            | 232.86                 | $(9/2^{-})$          | 0.0    | $(5/2^{-})$    |
| 154.2 2                | 12 3                   | 464.14                 | $(7/2^+)$            | 309.93 | $(5/2^+)$              | 246.9 <i>1</i>         | 203 10                 | 246.73                 | $(3/2^+)$            | 0.0    | $(5/2^{-})$    |

Continued on next page (footnotes at end of table)

|                        |                        |                        | $^{105}$ Nb $\beta^{-}$          | $^{105}$ Nb $\beta^{-}$ decay (2.91 s) |                             | 1995Li13,1984Sh03 (continued |  |  |
|------------------------|------------------------|------------------------|----------------------------------|----------------------------------------|-----------------------------|------------------------------|--|--|
|                        |                        |                        |                                  |                                        | $\gamma$ ( <sup>105</sup> M | Io) (continued)              |  |  |
| $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\dagger}$ | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$             | $E_f$                                  | $\mathbf{J}_f^{\pi}$        |                              |  |  |
| 253.7 2                | 48 5                   | 348.60                 | $(5/2^+)$                        | 94.86                                  | $(7/2^{-})$                 | -                            |  |  |
| 261.1 3                | 72                     | 507.80                 | $(7/2^+)$                        | 246.73                                 | $(3/2^+)$                   |                              |  |  |
| <sup>x</sup> 266.8 3   | 73                     |                        | ., ,                             |                                        |                             |                              |  |  |
| 274.7 3                | 4 1                    | 507.80                 | $(7/2^+)$                        | 232.86                                 | $(9/2^{-})$                 |                              |  |  |
| 278.1 2                | 12 2                   | 524.69                 | $(5/2^+)$                        | 246.73                                 | $(3/2^+)$                   |                              |  |  |
| 283.0 2                | 82                     | 377.70                 | $(11/2^{-})$                     | 94.86                                  | $(7/2^{-})$                 |                              |  |  |
| 309.9 1                | 108 6                  | 309.93                 | $(5/2^+)$                        | 0.0                                    | $(5/2^{-})$                 |                              |  |  |
| 348.5 1                | 45 <i>4</i>            | 348.60                 | $(5/2^+)$                        | 0.0                                    | $(5/2^{-})$                 |                              |  |  |
| 369.3 2                | 29 <i>2</i>            | 464.14                 | $(7/2^+)$                        | 94.86                                  | $(7/2^{-})$                 |                              |  |  |
| 415.9 2                | 18 <i>3</i>            | 648.71                 | $(5/2^{-} \text{ to } 11/2^{-})$ | 232.86                                 | $(9/2^{-})$                 |                              |  |  |
| 419.4 2                | 14 <i>3</i>            | 514.18                 | $(3/2^{-} \text{ to } 9/2^{-})$  | 94.86                                  | $(7/2^{-})$                 |                              |  |  |
| 514.0 <i>3</i>         | 34 6                   | 514.18                 | $(3/2^{-} \text{ to } 9/2^{-})$  | 0.0                                    | $(5/2^{-})$                 |                              |  |  |
| 553.8 2                | 20 2                   | 648.71                 | $(5/2^{-} \text{ to } 11/2^{-})$ | 94.86                                  | $(7/2^{-})$                 |                              |  |  |
| <sup>x</sup> 560.7 3   | 84                     |                        |                                  |                                        |                             |                              |  |  |
| <sup>x</sup> 606.1 2   | 17 4                   |                        |                                  |                                        |                             |                              |  |  |
| <sup>x</sup> 909.8 3   | 17 4                   |                        |                                  |                                        |                             |                              |  |  |

<sup>†</sup> From 1984Sh03. <sup>*x*</sup>  $\gamma$  ray not placed in level scheme.

## $\frac{105}{\text{Nb} \beta^{-} \text{decay} (2.91 \text{ s})}$ 1995Li13,1984Sh03

