TypeAuthorCitationLiterature Cutoff DateFull EvaluationS. Lalkovski, J. Timar and Z. ElekesNDS 161, 1 (2019)1-Apr-2019

Parent: ¹⁰⁵Sn: E=0.0; $J^{\pi}=(5/2^+)$; $T_{1/2}=32.7$ s 5; $Q(\varepsilon)=6303$ 11; $\%\varepsilon+\%\beta^+$ decay=98.9 4

¹⁰⁵Sn- $\%\varepsilon$ + $\%\beta^+$ decay: $\%\varepsilon$ =42.0 35 (from Total Absorption measurements in 2006Ka44), $\%\varepsilon$ p+ $\%\beta^+$ p=0.011 4 (2006Ka44).

1995Pf01: Source: chemically sepparated from ⁵⁸Ni+⁵⁰Cr; Beam: E(⁵⁸Ni)=5 MeV/nucleon; Target: 35 mg/cm² thick ⁵⁰Cr,

enriched to 97%; Detectors: on-line mass separator, ions source, catcher foils, transport tape, three Ge, particle telescope; Measured: X-rays, γ , p, E γ , I γ , $\gamma\gamma$, X- γ coinc.; Deduced: ¹⁰⁵In level scheme, T_{1/2}.

2006Ka44: Facility: ISOL at GSI; Source: chemically separated from ⁵⁰Cr(⁵⁸Ni,2p1n) reaction; Beam: E(⁵⁸Ni)=5.2 MeV/nucleon; Target: 3-4 mg/cm² thick ⁵⁰Cr; Detectors: ISOL, tape station, Total absorption spectrometer (TAS) consisting of one large-volume NaI, one plannar Ge x-ray detector (GEX), two Si charged-particles detectors; Measured: X-rays, γ -rays, E γ , I γ , particle – x-ray coinc., TAS- β + coinc.; Deduced: ε channel, TAS(β +); Also, from the same collaboration: 2006Ka74, 2005Ka48. The 5.2 MeV beam was provided by the ISOL facility in Darmstadt. Measurements were taken using a large NaI(TI) crystal. Total absorbtion γ -ray spectrometer was used to measure the β - and γ - intensity over the entire range of energies. A peak in β intensity was observed at 3.60 MeV.

¹⁰⁵In Levels

Others: 1985De08.

E(level) [†]	Jπ‡	E(level) [†]	$\mathrm{J}^{\pi \ddagger}$	E(level) [†]	J ^π ‡
0.0	9/2+	2311.6 6	$(3/2^+, 5/2^+, 7/2^+)$	3143.7 7	$(3/2^+, 5/2^+, 7/2^+)$
674.08 25	$(1/2^{-})$	2369? 5		3158.4 6	$(3/2^+, 5/2^+, 7/2^+)$
991.8 <i>3</i>	$11/2^{+}$	2370.3 11		3242.2 11	$(3/2^+, 5/2^+, 7/2^+)$
1209.6 4		2399.1 11	$(3/2^+, 5/2^+, 7/2^+)$	3262.2 11	$(3/2^+, 5/2^+, 7/2^+)$
1281.73 24	$(5/2^+, 7/2^+)$	2426.2 8	$(7/2^+ \text{ to } 13/2^+)$	3414.2 5	$(3/2^+, 5/2^+, 7/2^+)$
1302.9 5		2471.2 8	$(3/2^+, 5/2^+, 7/2^+)$	3435.7? 10	
1415.9 <i>3</i>	$(7/2^+)$	2517.4 11	$(3/2^+, 5/2^+, 7/2^+)$	3466.28 10	$(5/2^+, 7/2^+)$
1417.0 <i>3</i>	$(5/2^+, 7/2^+)$	2590.3 4	$(3/2^+)$	3471.5 5	$(5/2^+, 7/2^+)$
1465.9 <i>3</i>	$(5/2^+, 7/2^+)$	2625.7 11	$(7/2^+)$	3524.9 11	$(3/2^+, 5/2^+, 7/2^+)$
1590.8 4		2664.9 11		3573.4? 10	
1881.5 8	$(7/2^+)$	2752.4 11	$(3/2^+, 5/2^+, 7/2^+)$	3593.7 8	$(3/2^+, 5/2^+, 7/2^+)$
1932.2 5	$(3/2^+)$	2758.7 8		3626.8 8	$(3/2^+)$
1942.4 5	$(5/2^+ \text{ to } 11/2^+)$	2771 5		3636.1 6	$(3/2^+, 5/2^+, 7/2^+)$
1978.7 6	$(3/2^+, 5/2^+, 7/2^+)$	2782.1 4	$(3/2^+)$	3655.6 8	$(3/2^+, 5/2^+, 7/2^+)$
1984.5 <i>3</i>	$(5/2^+, 7/2^+)$	2958.2 11	$(3/2^+, 5/2^+, 7/2^+)$	3699.8 8	$(3/2^+, 5/2^+, 7/2^+)$
1988.0 <i>11</i>		2964.4 8	$(3/2^+)$	3952.1 6	$(3/2^+)$
2222.1 8	$(3/2^+, 5/2^+, 7/2^+)$	3024.6 5	$(3/2^+, 5/2^+, 7/2^+)$	4197.9? <i>11</i>	$(3/2^+, 5/2^+, 7/2^+)$
2269.9 11		3112.4 8	$(7/2^+)$		

[†] From a least-squares fit to $E\gamma$.

[‡] From the Adopted Levels.

ε, β^+ radiations

E(decay)	E(level)	$I\beta^+$ †	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon\!+\!\beta^+)^\dagger$	Comments
(2105 11)	4197.9?	0.13 2	0.64 13	4.76 9	0.77 15	av Eβ=483.6 49; εK=0.719 4; εL=0.0928 6; εM+=0.02360 14
(2351 11)	3952.1	1.05 6	2.72 14	4.231 25	3.77 19	av E β =592.7 50; ε K=0.621 5; ε L=0.0799 7; ε M+=0.02031 16
(2603 11)	3699.8	0.62 8	0.92 11	4.79 6	1.54 19	av Eβ=705.8 50; εK=0.513 5; εL=0.0659 6; εM+=0.01674 16
(2647 11)	3655.6	0.67 5	0.90 6	4.82 4	1.57 11	av E β =725.7 50; ε K=0.494 5; ε L=0.0635 6; ε M+=0.01614 15

Continued on next page (footnotes at end of table)

¹⁰⁵Sn ε decay (32.7 s) **1995**Pf01,2006Ka44 (continued)

ϵ, β^+ radiations (continued)

E(decay)	E(level)	$I\beta^+$ †	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^\dagger$	Comments
(2667 11)	3636.1	0.96 17	1.2 2	4.68 8	2.2 4	av E β =734.5 50; ε K=0.486 5; ε L=0.0624 6; ε M+=0.01587
(2676 11)	3626.8	0.66 8	0.85 11	4.85 6	1.51 19	av $E\beta$ =738.7 50; ε K=0.483 5; ε L=0.0620 6; ε M+=0.01575
(2709 11)	3593.7	0.57 8	0.68 10	4.96 7	1.25 18	av $E\beta$ =753.7 50; ε K=0.469 5; ε L=0.0602 6; ε M+=0.01531
(2778 11)	3524.9	0.29 12	0.30 12	5.33 18	0.59 24	av $E\beta$ =784.8 51; ε K=0.442 5; ε L=0.0567 6; ε M+=0.01441
(2832 11)	3471.5	2.2 3	2.2 2	4.50 5	4.4 5	av $E\beta$ =809.0 50; ε K=0.422 5; ε L=0.0541 6; ε M+=0.01375
(2837 11)	3466.28	0.9 3	0.9 3	4.89 15	1.8 6	av E β =811.4 50; ε K=0.420 5; ε L=0.0538 6; ε M+=0.01368
(2889 11)	3414.2	1.26 8	1.09 7	4.81 3	2.35 14	av E β =835.1 50; ε K=0.401 4; ε L=0.0514 6; ε M+=0.01306
(3041 11)	3262.2	0.37 7	0.25 5	5.49 9	0.62 12	av $E\beta$ =904.4 51; ε K=0.349 4; ε L=0.0447 5; ε M+=0.01136
(3061 11)	3242.2	0.30 7	0.20 5	5.60 11	0.50 12	av $E\beta$ =913.5 51; ε K=0.343 4; ε L=0.0439 5; ε M+=0.01115 12
(3145 11)	3158.4	1.26 4	0.733 24	5.056 17	1.99 6	av $E\beta$ =951.9 51; ε K=0.317 4; ε L=0.0406 5; ε M+=0.01032
(3159 11)	3143.7	1.3 4	0.73 22	5.06 13	2.0 6	av $E\beta=958.6~51$; $\varepsilon K=0.313~4$; $\varepsilon L=0.0401~5$; $\varepsilon M+=0.01018$
(3191 11)	3112.4	1.5 2	0.81 11	5.02 6	2.3 3	av $E\beta$ =973.0 51; ε K=0.304 4; ε L=0.0389 4; ε M+=0.00989
(3278 11)	3024.6	2.0 3	0.98 13	4.97 6	3.0 4	av $E\beta=1013.3 51$; $\varepsilon K=0.281 3$; $\varepsilon L=0.0359 4$; $\varepsilon M=0.00912 10$
(3339 11)	2964.4	0.55 14	0.25 6	5.58 11	0.80 20	av E β =1041.0 51; ε K=0.265 3; ε L=0.0340 4; ε M+=0.00862 9
(3345 11)	2958.2	0.35 4	0.15 2	5.79 6	0.50 6	av $E\beta$ =1043.9 51; ε K=0.264 3; ε L=0.0338 4; ε M_{\pm}=0.0858.9
(3521 11)	2782.1	3.5 2	1.3 1	4.92 3	4.8 3	av E β =1125.2 51; ϵ K=0.2249 23; ϵ L=0.0287 3; ϵ M+-0.00730 8
(3544 11)	2758.7	0.37 15	0.13 5	5.92 18	0.50 20	av E β =1136.1 51; ϵ K=0.2202 22; ϵ L=0.0281 3; ϵ M+=0.00715 8
(3551 11)	2752.4	0.9 3	0.30 10	5.54 15	1.2 4	av E β =1139.0 52; ε K=0.2189 22; ε L=0.0280 3; ε M=-0.00711 8
(3638 11)	2664.9	0.25 14	0.08 4	6.16 24	0.33 18	av E β =1179.6 52; ϵ K=0.2025 20; ϵ L=0.0259 3; ϵ M+=0.00657 7
(3677 11)	2625.7	0.66 12	0.20 3	5.77 8	0.86 15	av $E\beta$ =1197.8 52; ε K=0.1955 20; ε L=0.02498 25; ε M \pm -0.00634 7
(3713 11)	2590.3	1.7 4	0.48 11	5.38 10	2.2 5	av $E\beta$ =1214.2 52; ε K=0.1895 19; ε L=0.02421 24; ε M+=0.00615 6
(3786 11)	2517.4	0.6 3	0.2 1	5.87 22	0.8 4	av E β =1248.1 52; ϵ K=0.1778 18; ϵ L=0.02271 22; ϵ M+=0.00577 6
(3832 11)	2471.2	1.4 2	0.34 6	5.57 8	1.7 3	av E β =1269.7 52; ε K=0.1709 17; ε L=0.02182 21; sM \pm -0.00554 6
(3877 11)	2426.2	0.4 5	0.10 11	6.1 6	0.5 6	av $E\beta$ =1290.7 52; ε K=0.1644 16; ε L=0.02099 20; ε M+=0.00533 5
(3904 11)	2399.1	1.16 10	0.266 23	5.68 4	1.43 12	av $E\beta$ =1303.3 52; ε K=0.1606 16; ε L=0.02050 20; ε M+=0.00521 5
(3933 11)	2370.3	0.61 17	0.13 4	5.99 13	0.74 21	av $E\beta$ =1316.7 52; ε K=0.1568 15; ε L=0.02001 19; ε M+=0.00508 5
(3991 11)	2311.6	1.2 2	0.26 5	5.71 9	1.5 3	av $E\beta$ =1344.2 52; ε K=0.1492 14; ε L=0.01904 18; ε M+=0.00483 5
(4033 11)	2269.9	0.35 3	0.070 5	6.29 4	0.42 3	av E β =1363.7 52; ε K=0.1441 14; ε L=0.01838 17; ε M=-0.00467 5
(4081 11)	2222.1	2.0 3	0.39 5	5.56 6	2.4 3	av E β =1386.1 52; ε K=0.1385 13; ε L=0.01767 17;

Continued on next page (footnotes at end of table)

$^{105} \mathrm{Sn}\,\varepsilon$ decay (32.7 s) 1995Pf01,2006Ka44 (continued)

ϵ, β^+ radiations (continued)

E(decay)	E(level)	$I\beta^+$ [†]	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$	Comments
(4315 11)	1988.0	0.85 18	0.13 <i>3</i>	6.08 10	0.98 21	ε M+=0.00449 5 av E β =1495.9 52; ε K=0.1147 10; ε L=0.01462 1
(4319 11)	1984.5	2.9 4	0.44 7	5.56 7	3.3 5	ε M+=0.00371 4 av E β =1497.6 52; ε K=0.1144 10; ε L=0.01458 1 ε M+=0.00370 4
(4324 11)	1978.7	1.5 4	0.22 7	5.85 13	1.7 5	av E β =1500.3 52; ε K=0.1139 10; ε L=0.01452 1 ε M+=0.00369 4
(4361 11)	1942.4	1.1 4	0.17 6	5.98 17	1.3 5	av Eβ=1517.4 52; εK=0.1107 10; εL=0.01411 1 εM+=0.00358 4
(4371 11)	1932.2	4.0 3	0.59 5	5.44 4	4.6 4	av $E\beta$ =1522.2 52; ε K=0.1098 10; ε L=0.01400 1 ε M+=0.00355 3
(4422 11)	1881.5	1.67 <i>19</i>	0.23 3	5.85 6	1.90 22	av E β =1546.1 52; ϵ K=0.1056 9; ϵ L=0.01345 12 ϵ M+=0.00342 3
(4712 11)	1590.8	1.5 7	0.17 8	6.05 21	1.7 8	av E β =1683.3 52; ε K=0.0849 7; ε L=0.01082 9; ε M=-0.002746 23
(4837 11)	1465.9	6.9 7	0.68 7	5.46 5	7.6 8	av E β =1742.5 53; ϵ K=0.0777 6; ϵ L=0.00989 8; ϵ M+=0.002510 20
(4886 11)	1417.0	4.0 4	0.38 4	5.72 4	4.4 4	av E β =1765.6 53; ϵ K=0.0750 6; ϵ L=0.00955 8; ϵ M+=0.002425 19
(4887 11)	1415.9	4.2 5	0.40 4	5.70 5	4.6 5	av E β =1766.2 53; ϵ K=0.0750 6; ϵ L=0.00955 8; ϵ M = -0.002423 10
(5021 11)	1281.73	10.1 6	0.87 6	5.39 3	11.0 7	av E β =1829.9 53; ϵ K=0.0683 6; ϵ L=0.00870 7;
(5311 11)	991.8	2.3 4	0.16 <i>3</i>	6.17 7	2.5 4	av E β =1967.9 53; ε K=0.0564 4; ε L=0.00717 6; ε M+=0.001821 13

Comments
EM+=0.00449 5
av Eβ=1495.9 52; εK=0.1147 10; εL=0.01462 13;
εM+=0.00371 4
av E β =1497.6 52; ε K=0.1144 10; ε L=0.01458 13;
εM+=0.00370 4
av $E\beta$ =1500.3 52; ε K=0.1139 10; ε L=0.01452 13;
$\varepsilon M += 0.00369 4$
av $E\beta$ =1517.4 52; ε K=0.1107 10; ε L=0.01411 13;
$\varepsilon M += 0.00358 4$
av $E\beta$ =1522.2 52; ε K=0.1098 10; ε L=0.01400 13;
$\varepsilon M += 0.00355 3$
av $E\beta = 1546.1 \ 52$; $\epsilon K = 0.1056 \ 9$; $\epsilon L = 0.01345 \ 12$;
EWI += 0.00342.5 av $ER = 1682.2.52$; aV = 0.0840.7; aI = 0.01082.0;
$aV = D = 1005.5 \ 52, \ ER = 0.0049 \ 7, \ EL = 0.01002 \ 9, \ cM + -0.002746 \ 23$
FF = 0.002740.23 av $FF = 1742.5.53$ cK = 0.0777.6 cL = 0.00989.8
sM = 0.002510.20
av $F\beta = 1765.6.53$: $\epsilon K = 0.0750.6$: $\epsilon L = 0.00955.8$:
$\epsilon M + = 0.002425$ 19
av E β =1766.2 53; ε K=0.0750 6; ε L=0.00955 8;
εM+=0.002423 19
av E β =1829.9 53; ε K=0.0683 6; ε L=0.00870 7;
€M+=0.002208 17

 † For absolute intensity per 100 decays, multiply by 0.989 4.

 $\gamma(^{105}\text{In})$

I γ normalization: from $\Sigma(I(\gamma+ce)$ to g.s.)=100 and by assuming there is no direct feeding to the g.s.. I γ normalization only tentative, given higher-lying γ are expected from TAS measurements (2006Ka44).

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger\ddagger}$	E _i (level)	\mathbf{J}_i^π	E_f	${ m J}_f^\pi$	Mult.	δ	α #	$I_{(\gamma+ce)}$ ‡	Comments
287.9 10	21 4	1590.8		1302.9		D (1)		0.02.12	2 00 ć	
309.1 3	282-6	1590.8		1281.73	(5/21,7/21)	[M1]		0.0242	289 6	I_{γ} : Deduced by the evaluators from I(tot)= 289 given by the authors assuming transition is M1.
341.2 <i>10</i> 388.0 <i>10</i>	16 8 12 2	1932.2 1978.7	$(3/2^+)$ $(3/2^+, 5/2^+, 7/2^+)$	1590.8 1590.8						
402.1 ^{&} 10	91	2771		2369?						
424.1 5	78 4	1415.9	$(7/2^+)$	991.8	11/2+					
476.6 5	55 6	1942.4	$(5/2^+ \text{ to } 11/2^+)$	1465.9	$(5/2^+, 7/2^+)$					
535.5 <i>3</i>	209 9	1209.6		674.08	$(1/2^{-})$					
561.7 10	20 4	1978.7	$(3/2^+, 5/2^+, 7/2^+)$	1417.0	$(5/2^+, 7/2^+)$					
599.6 10	36 4	1881.5	$(7/2^+)$	1281.73	$(5/2^+, 7/2^+)$					
628.7 5	70 10	1302.9		674.08	$(1/2^{-})$					
629.3 5	50 10	1932.2	$(3/2^{+})$	1302.9						
674.1 <i>3</i>	679	674.08	(1/2 ⁻)	0.0	9/2+	M4		0.0604	720	$\alpha(K)=0.0507 \ 8; \ \alpha(L)=0.00787 \ 12;$ $\alpha(M)=0.001564 \ 4; \ \alpha(O)=1.94\times10^{-5} \ 3$ I_{γ} : Deduced by the evaluators from I(tot)=720 given by the authors assuming transition is M4. Mult : from $\alpha(axp)=0.0556 \ (2006Ke44)$
697 0 10	24 14	1978 7	$(3/2^+ 5/2^+ 7/2^+)$	1281 73	$(5/2^+, 7/2^+)$					Mult.: If $u(exp) = 0.035 \ 0 \ (2000 \ Ka44)$.
722.5 10	39 4	1932.2	$(3/2^+)$	1201.75	(3/2 ,//2)					
733 7 & 10	7 2	2664.0	(0/=)	1032.2	$(3/2^{+})$					
756.2 10	49.8	2004.9	(3/2 + 5/2 + 7/2 +)	1465.9	$(5/2^+)$ $(5/2^+, 7/2^+)$					
778 3 10	33 7	1988.0	(3/2,3/2,7/2)	1209.6	(3/2 ,//2)					
822 2 ⁸ 10	<15	21/2 7	$(2/2^+ 5/2^+ 7/2^+)$	2211.6	$(2/2^+ 5/2^+ 7/2^+)$					
880 1 10	36.6	2471.2	(3/2, 3/2, 7/2) $(3/2^+, 5/2^+, 7/2^+)$	1500.8	(3/2 ,3/2 ,1/2)					
889 9 10	28.6	1881 5	(3/2, 3/2, 7/2) $(7/2^+)$	991.8	$11/2^{+}$					
895 7 5	50 10	2311.6	$(3/2^+ 5/2^+ 7/2^+)$	1415.9	$(7/2^+)$					
003.7% 5	40 12	22602	(3/2 ,3/2 ,1/2)	1465.0	(7/2)					
933 2 10	49 12	23091	(3/2+5/2+7/2+)	1465.9	$(5/2^+,7/2^+)$					
954 4 10	$\frac{+0}{25}$ 7	2370.3	(3/2, 3/2, 7/2)	1415.9	$(3/2^+, 7/2^-)$					
991.8.3	276.6	991.8	$11/2^{+}$	0.0	9/2+	M1+F2	051			δ : from the Adopted Gammas
1012.4 10	31.6	2222.1	$(3/2^+, 5/2^+, 7/2^+)$	1209.6	<i>>1=</i>	1/11 1.2	0.0 1			o. nom die Adopted Gammas.
1026.0 10	17 2	2958.2	$(3/2^+, 5/2^+, 7/2^+)$	1932.2	$(3/2^+)$					
1040.0 10	40 18	3466.28	$(5/2^+, 7/2^+)$	2426.2	$(7/2^+ \text{ to } 13/2^+)$					
1046.0 10	19 10	3636.1	$(3/2^+, 5/2^+, 7/2^+)$	2590.3	$(3/2^+)$					

4

¹⁰⁵Sn ε decay (32.7 s) **1995Pf01,2006Ka44** (continued)

$\gamma(^{105}\text{In})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger\ddagger}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}
1051.5 10	26 11	2517.4	$(3/2^+, 5/2^+, 7/2^+)$	1465.9	$(5/2^+, 7/2^+)$
1060.2 10	14 <i>1</i>	2269.9		1209.6	
1074.0 10	11 6	2664.9		1590.8	
1161.5 10	39 12	2752.4	$(3/2^+, 5/2^+, 7/2^+)$	1590.8	
1167.8 <i>10</i>	12 6	2758.7		1590.8	
1189.7 <i>10</i>	22 6	2471.2	$(3/2^+, 5/2^+, 7/2^+)$	1281.73	$(5/2^+, 7/2^+)$
^x 1244.5 10	34 6				
1258.2 5	66 1	1932.2	$(3/2^+)$	674.08	$(1/2^{-})$
1281.7 <i>3</i>	1000	1281.73	$(5/2^+, 7/2^+)$	0.0	9/2+
1361.9 10	31 1	3952.1	$(3/2^+)$	2590.3	$(3/2^+)$
1364.7 10	48 4	2782.1	$(3/2^{+})$	1417.0	$(5/2^+, 7/2^+)$
^x 1400.5 <i>10</i>	29 5				
1415.9 <i>3</i>	216 10	1415.9	$(7/2^+)$	0.0	9/2+
1416.9 <i>3</i>	231 10	1417.0	$(5/2^+, 7/2^+)$	0.0	9/2+
1433.9 10	45 7	3024.6	$(3/2^+, 5/2^+, 7/2^+)$	1590.8	
1434.2 10	25 4	2426.2	$(7/2^+ \text{ to } 13/2^+)$	991.8	11/2+
1465.9 <i>3</i>	553 20	1465.9	$(5/2^+, 7/2^+)$	0.0	9/2+
1477.0 10	<10	2758.7		1281.73	$(5/2^+, 7/2^+)$
1486.8 10	27 10	3471.5	$(5/2^+, 7/2^+)$	1984.5	$(5/2^+, 7/2^+)$
1500.4 5	53 7	2782.1	$(3/2^+)$	1281.73	$(5/2^+,7/2^+)$
1521.7 10	45 8	3112.4	$(7/2^+)$	1590.8	
1547.5 ^{&} 10	14 <i>3</i>	2222.1	$(3/2^+, 5/2^+, 7/2^+)$	674.08	$(1/2^{-})$
1547.5 10	14 <i>3</i>	2964.4	$(3/2^+)$	1417.0	$(5/2^+, 7/2^+)$
1590.8 10	35 8	1590.8		0.0	9/2+
1607.6 10	26 5	4197.9?	$(3/2^+, 5/2^+, 7/2^+)$	2590.3	$(3/2^+)$
1633.9 10	29 5	2625.7	$(7/2^+)$	991.8	$11/2^{+}$
1651.3 [@] 10	17 [@] 4	3242.2	$(3/2^+, 5/2^+, 7/2^+)$	1590.8	
1651.3 [@] 10	16 [@] 3	3593.7	$(3/2^+, 5/2^+, 7/2^+)$	1942.4	$(5/2^+ \text{ to } 11/2^+)$
1671.3 10	21 4	3262.2	$(3/2^+, 5/2^+, 7/2^+)$	1590.8	
1692.5 5	67 2	3158.4	$(3/2^+, 5/2^+, 7/2^+)$	1465.9	$(5/2^+, 7/2^+)$
1713.0 10	26 2	3655.6	$(3/2^+, 5/2^+, 7/2^+)$	1942.4	$(5/2^+ \text{ to } 11/2^+)$
x1725.6 10	19 6				
1742.8 5	56 11	3024.6	$(3/2^+, 5/2^+, 7/2^+)$	1281.73	$(5/2^+, 7/2^+)$
^x 1770.5 10	17 <i>I</i>				
1822.9 10	15 <i>3</i>	3414.2	$(3/2^+, 5/2^+, 7/2^+)$	1590.8	
1916.2 <i>3</i>	149 9	2590.3	$(3/2^+)$	674.08	$(1/2^{-})$
1934.0 [@] 5	68 [@] 18	3143.7	$(3/2^+, 5/2^+, 7/2^+)$	1209.6	
1934.0 [@] 10	20 [@] 8	3524.9	$(3/2^+, 5/2^+, 7/2^+)$	1590.8	
1942.2 10	30 14	1942.4	$(5/2^+ \text{ to } 11/2^+)$	0.0	9/2+
1984.5 <i>3</i>	139 12	1984.5	$(5/2^+, 7/2^+)$	0.0	9/2+
2005.9 10	24 9	3471.5	$(5/2^+, 7/2^+)$	1465.9	$(5/2^+, 7/2^+)$
2019.7 ^{&} 10	22 8	3435.7?		1415.9	$(7/2^+)$

S

Fro
Ĕ
巴
ISI
Ħ

	γ ⁽¹⁰⁵ In) (continued)										
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger\ddagger}$	E _i (level)	\mathbf{J}_i^π	E_f	${\sf J}_f^\pi$	E_{γ}^{\dagger}	$I_{\gamma}^{\dagger\ddagger}$	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_{f}^{π}
2108.1 5 2120.4 <i>10</i> 2132.5 5	59 5 32 6 64 2	2782.1 3112.4 3414.2	$(3/2^+)$ $(7/2^+)$ $(3/2^+, 5/2^+, 7/2^+)$	674.08 991.8 1281.73	$(1/2^{-})$ $11/2^{+}$ $(5/2^{+},7/2^{+})$	2589 ^{&} 10 ^x 2676 1 ^x 2706 1	39 2 16 2 19 2	3262.2	(3/2 ⁺ ,5/2 ⁺ ,7/2 ⁺)	674.08	(1/2 ⁻)
2189.8 [@] 10 2189.8 [@] 10 2219.9 10 2261.2 10	28 [@] 3 27 [@] 3 41 3 35 4	3471.5 3655.6 3636.1 3471.5	$(5/2^+,7/2^+)$ $(3/2^+,5/2^+,7/2^+)$ $(3/2^+,5/2^+,7/2^+)$ $(5/2^+,7/2^+)$	1281.73 1465.9 1415.9 1209.6	$(5/2^+,7/2^+)$ $(5/2^+,7/2^+)$ $(7/2^+)$	^x 2732 1 2953 1 ^x 2984 1 ^x 3254 1	45 8 24 <i>4</i> 42 <i>3</i> 16 8	3626.8	(3/2+)	674.08	(1/2 ⁻)
2283.6 ^{&} 10 2283.6 10 2290.3 10	23 <i>4</i> 23 <i>4</i> 13 6	2958.2 3699.8 2964.4	$\begin{array}{c} (3/2^+, 5/2^+, 7/2^+) \\ (3/2^+, 5/2^+, 7/2^+) \\ (3/2^+) \end{array}$	674.08 1415.9 674.08	$(1/2^{-})$ $(7/2^{+})$ $(1/2^{-})$	3278.0 <i>5</i> 3466.22 <i>10</i> 3472 <i>1</i>	96 6 22 6 33 6	3952.1 3466.28 3471.5	$(3/2^+)$ $(5/2^+,7/2^+)$ $(5/2^+,7/2^+)$	674.08 0.0 0.0	(1/2 ⁻) 9/2 ⁺ 9/2 ⁺
2291.6 ^{&} 10 2311.9 10 2344.8 10 *2351.3 10	12 6 26 5 27 5 26 6	3573.4? 3593.7 3626.8	$(3/2^+, 5/2^+, 7/2^+)$ $(3/2^+)$	1281.73 1281.73 1281.73	$(5/2^+,7/2^+) (5/2^+,7/2^+) (5/2^+,7/2^+)$	x3542 1 3636 1 x3681 1 3700 1	24 <i>4</i> 14 <i>3</i> 12 <i>6</i> 29 5	3636.1	$(3/2^+, 5/2^+, 7/2^+)$ $(3/2^+, 5/2^+, 7/2^+)$	0.0	9/2 ⁺
x2371.0 5 2426 10 x2527.0 5	51 <i>I</i> 33 6 68 6	2426.2	(7/2 ⁺ to 13/2 ⁺)	0.0	9/2+	x3751 1 x3787 1 x3819 1	5 2 10 4 10 8	5077.0	(312,312,112)	0.0)/2

¹⁰⁵Sn ε decay (32.7 s) **1995Pf01,2006Ka44** (continued)

6

[†] From 1995Pf01; ΔE not given by the authors, but estimated by the evaluators as $\Delta E = 0.3$ keV for I γ >100; $\Delta E = 0.5$ keV for I γ between 50 and 100; and $\Delta E = 1.0$ keV for I γ <50.

[±] For absolute intensity per 100 decays, multiply by 0.02970 *13*.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[@] Multiply placed with intensity suitably divided.

[&] Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

