51 V(58 Ni,2p2n γ) 1992Is02,1995Is06

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	S. Lalkovski, J. Timar and Z. Elekes	NDS 161, 1 (2019)	1-Apr-2019

Includes ⁵⁶Fe(⁵⁴Fe,3p2n) reaction data.

Facility: Japan Atomic Energy Research Institute's Tandem accelerator; Beam: $E(^{58}Ni)=27$ MeV; Target: 6.1 mg/cm² enriched to 99.8% in ⁵¹V; Detectors: 4π Si box consisting of 10 Si surface barrier detectors, four HPGe, planar Ge, plunger; Measured: c.p.- γ ,

 γ , γ - γ coinc., E γ , I γ , linear polarisation, angular distribution; Deduced: level scheme, γ -ray Mult., J^{π} , $T_{1/2}$.

¹⁰⁵In Levels

E(level) [†]	J^{π}	$T_{1/2}^{\ddagger}$	Comments
0.0#	9/2+		
992.0 9	$11/2^{+}$		
1342.0 [#] 9	$13/2^{+}$		
1827.0 [#] <i>13</i>	$17/2^{+}$	0.33 ns 10	
2099.0 [#] 17	$19/2^{+}$	4 ps 2	
2230.1 19	$21/2^+$		E(level): due to reversed ordering of 1730-131 cascade in later studies
ш			(1997Ko51,1999De50), this level is non-existent, instead the level is defined at 3829.
2939.3 [#] 18	$21/2^{+}$		
3346.7 [#] 19	$23/2^+$		
3632.7 [#] 21	$25/2^+$		
3960.2 [@] 19	$23/2^{-}$		
4358.2 [@] 22	$25/2^{-}$		
5048.2 [@] 24	$27/2^{-}$		
5450 [@] 3	$29/2^{-}$		
5892 [@] 3	31/2-		

[†] From a least-squares fit to $E\gamma$'s. $\Delta(E\gamma)=1$ keV assumed by the evaluators.

[‡] From RDDS in 1992Is02, and 1995Is06. [#] Band(A): γ sequence based on g.s..

[@] Band(B): γ sequence based on $23/2^-$.

$\gamma(^{105}{\rm In})$

Eγ	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [†]	Comments
131 [@]	15 ^{&} 4	2230.1	$21/2^{+}$	2099.0 1	9/2+		
272	90 5	2099.0	$19/2^{+}$	1827.0 1	$7/2^+$	M1	Mult.: pol>1.
286	18 2	3632.7	25/2+	3346.7 2	23/2+	M1	Mult.: $A_2 = -0.23 2$; $A_4 = 0.06 4$. Mult.: pol>1. Mult.: $A_2 = -0.29 3$; $A_4 = 0.14 7$.
350	42 2	1342.0	13/2+	992.0 1	1/2+	M1	Mult.: $p_0 > 1$. Mult.: $A_2 = -0.21$ 3; $A_4 = 0.10$ 7.
398	43 4	4358.2	$25/2^{-}$	3960.2 2	$23/2^{-}$	(M1)	2 · · · · · · · · · · · · · · · · · · ·
402 ^{‡#}	26 10	5450	$29/2^{-}$	5048.2 2	$27/2^{-}$		
407	18 ^{&} 5	3346.7	$23/2^+$	2939.3 2	$21/2^+$		
442 ^{‡#}	23 9	5892	31/2-	5450 2	$29/2^{-}$		
485	139 14	1827.0	17/2+	1342.0 1	3/2+	E2	Mult.: pol<1. Mult.: A ₂ =0.26 <i>I</i> ; A ₄ =-0.15 <i>3</i> .
690 [‡]	28 4	5048.2	$27/2^{-}$	4358.2 2	25/2-		

Continued on next page (footnotes at end of table)

⁵¹V(⁵⁸Ni,2p2nγ) 1992Is02,1995Is06 (continued)

$\gamma(^{105}\text{In})$ (continued)

Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [†]	δ	Comments
840	43 13	2939.3	21/2+	2099.0	19/2+	M1+E2		E _γ : the γ-ray peak was contaminated by the 8 ⁺ to 6 ⁺ transition in ¹⁰⁴ Cd. Iγ, A ₂ and A ₄ values were obtained by subtraction of the component of ¹⁰⁴ Cd, assuming that γ in ¹⁰⁴ Cd shows $\gamma(\theta)$ with A ₂ =+0.28 and A ₄ =-0.08. Mult.: pol>1.
992	46 <i>3</i>	992.0	11/2+	0.0	9/2+	M1+E2	0.5 1	$A_2 = -0.04$ s, $A_4 = -0.05$ 12. Mult.: pol>1. Mult.: $A_2 = 0.21$ 3; $A_4 = -0.01$ 7.
1021	24 2	3960.2	23/2-	2939.3	21/2+	E1		$ δ: from γ(θ) and γ(lin pol). $ Mult.: pol<1. Mult : $Δ_{2} = 0.27$ 3: $Δ_{4} = 0.08$ 7.
1248	15 2	3346.7	$23/2^+$	2099.0	19/2+	E2		Mult.: $A_2 = 0.27.5$, $A_4 = 0.08.7$. Mult.: $pol < 1$.
1342	100	1342.0	13/2+	0.0	9/2+	E2		Mult.: $A_2=0.27$ 6, $A_4=0.05$ 72 (E2). Mult.: pol<1. Mult.: $A_2=0.28$ 2; $A_4=-0.08$ 7.
1730 [@]	15 2	3960.2	23/2-	2230.1	21/2+	E1		Mult.: pol \approx 1. Mult.: A ₂ =-0.29 5; A ₄ =-0.07 9.

[†] From $\gamma(\theta)$ and $\gamma(\ln \text{ pol})$. Polarization anisotropy is defined as n(parallel)/n(perpendicular); and values are plotted in figure 3 of 1992Is02.

[‡] Angular distribution coefficients could not be deduced because of Doppler broadening of the γ -ray.

[#] The ordering of the 442-402 cascade is reversed in later works (1997Ko51,1999De50).

[@] The ordering of the 1730-131 cascade is reversed in later works (1997Ko51,1999De50).

& The γ -ray was a doublet in the (charged particle) γ coin spectrum with multiplicity of 2. The intensity was estimated from the (charged particle) $\gamma\gamma$ coin spectrum.

 $^{105}_{49} In_{56}$

 51 V(58 Ni,2p2n γ) 199

1992Is02,1995Is06

¹⁰⁵₄₉In₅₆