76 Ge(34 S,5n γ) 1995Je04

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	S. Lalkovski, J. Timar and Z. Elekes	NDS 161, 1 (2019)	1-Apr-2019

1995Je04: Facility: Niels Bohr Institute's Tandem accelerator; Beam: E(³⁴S)=148 MeV; Target: self-supporting 1.0 mg/cm² thick, enriched in ⁷⁶Ge; Detectors: Nordball comprising 19 HPGe and one LEPS detector with anti-Compton shields, Inner ball comprising 60 BaF₂ scintillators, and Si-ball; Measured: charged particles, γ - γ coinc., γ - $\gamma(\theta)$, E γ , I γ ; Deduced: ¹⁰⁵Cd level scheme, J^{π} , band structure.

¹⁰⁵Cd Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments
0.0	5/2+	
131.3 7	$7/2^{+}$	
260.1 8	$(7/2)^+$	
604.0 8	$(7/2)^+$	
770.2 7	9/2+	
831.7 7	9/2+	
1162.2 [#] 9	$(11/2)^{-}$	configuration: $vh_{11/2}$.
1701.5 [#] 14	$(15/2)^{-}$	
2487.4 [#] 17	$(19/2)^{-}$	
3342.1 [#] 20	$(23/2)^{-}$	
4246.6 [#] 22	$(27/2^{-})$	
5224.2 [@] 24	$(29/2^{-})$	
5290.3 [#] 24	$(31/2)^{-}$	
5757.1 24	$(29/2^{-})$	
6302 [@] 3	$(33/2^{-})$	
6470 [#] 3	$(35/2)^{-}$	
6644 <i>3</i>		
7535 [@] 3	$(37/2^{-})$	
7800 [#] 3	(39/2 ⁻)	
8979 [@] 3	$(41/2^{-})$	
9266 [#] 3	$(43/2^{-})$	
10850 [#] 4	$(47/2^{-})$	
[†] From a lease	st-squares	fit to $E\gamma$.

[‡] From the Adopted Levels.

[#] Member of $\Delta J=2$ band, based on $11/2^-$. [@] Member of $\Delta J=2$ band, based on $29/2^-$.

$\gamma(^{105}\text{Cd})$

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E _f	J_f^{π} Mult. [‡]	Comments
131.2	20.6 8	131.3	7/2+	0.0 5/2	2+	
227.8	6.0 4	831.7	$9/2^{+}$	604.0 (7/	$(2)^{+}$	
260.2	12.8 2	260.1	$(7/2)^+$	0.0 5/2	2+	
330.5	48.3 7	1162.2	$(11/2)^{-}$	831.7 9/2	2^+ E1(+M2)	Mult.: R _{DCO} =0.71 4 (1995Je04).
392.0	48.6 9	1162.2	$(11/2)^{-}$	770.2 9/2	2^+ E1(+M2)	Mult.: R _{DCO} =0.68 3 (1995Je04).
510.2	10.4 6	770.2	$9/2^{+}$	260.1 (7/	$(2)^{+}$	
539.3	100	1701.5	$(15/2)^{-}$	1162.2 (11	1/2) ⁻ E2	Mult.: R _{DCO} =0.98 4 (1995Je04).

Continued on next page (footnotes at end of table)

76 Ge(34 S,5n γ) 1995Je04 (continued)

$\gamma(^{105}\text{Cd})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	Comments
604.0	5.9 11	604.0	$(7/2)^+$	0.0	5/2+		
639.0	27.3 15	770.2	9/2+	131.3	7/2+		
700.4	7.7 10	831.7	9/2+	131.3	$7/2^{+}$		
770.1	9.7 <i>3</i>	770.2	9/2+	0.0	$5/2^{+}$		
785.9		2487.4	$(19/2)^{-}$	1701.5	$(15/2)^{-}$	E2	Mult.: R _{DCO} =1.09 5 (1995Je04).
831.8	35.4 12	831.7	9/2+	0.0	$5/2^{+}$		
854.7	82.4 17	3342.1	$(23/2)^{-}$	2487.4	$(19/2)^{-}$	E2	Mult.: R _{DCO} =0.98 6 (1995Je04).
904.5	67.3 15	4246.6	$(27/2^{-})$	3342.1	$(23/2)^{-}$	E2	Mult.: R _{DCO} =1.06 11 (1995Je04).
977.5	19.8 <i>10</i>	5224.2	$(29/2^{-})$	4246.6	$(27/2^{-})$	M1	Mult.: E1 in 1995Je04, based on R _{DCO} =0.52 12.
1043.6	42.4 13	5290.3	$(31/2)^{-}$	4246.6	$(27/2^{-})$	E2	Mult.: R _{DCO} =1.12 16 (1995Je04).
1078.2	18.2 25	6302	$(33/2^{-})$	5224.2	$(29/2^{-})$	E2	Mult.: R _{DCO} =1.09 25 (1995Je04).
1179.4	27.7 15	6470	$(35/2)^{-}$	5290.3	$(31/2)^{-}$	E2	Mult.: R _{DCO} =1.11 23 (1995Je04).
1232.9	12.6 <i>21</i>	7535	$(37/2^{-})$	6302	$(33/2^{-})$		
1330.0	10.2 14	7800	$(39/2^{-})$	6470	$(35/2)^{-}$		
1354.1	10.2 14	6644		5290.3	$(31/2)^{-}$		
1443.3	7.99	8979	$(41/2^{-})$	7535	$(37/2^{-})$		
1465.9	5.3 7	9266	$(43/2^{-})$	7800	$(39/2^{-})$		
1510.4	6.79	5757.1	$(29/2^{-})$	4246.6	$(27/2^{-})$	E2	Mult.: R _{DCO} =0.91 30 (1995Je04).
1584.0	3.0 6	10850	$(47/2^{-})$	9266	$(43/2^{-})$		

[†] From 1995Je04. [‡] From 1995Je04, based on DCO measurements. $R_{DCO}=1$ for stretched E2 and 0.6 for stretched M1 transitions. For $\Delta J=0$, $0.48 \le R_{DCO} \le 1.10$.

 $^{105}_{48}\mathrm{Cd}_{57}$