$\frac{102 \text{Pd}(\alpha, \mathbf{n}\gamma) \quad \mathbf{1978Ge05}}{\text{History}}$ $\frac{\text{History}}{\text{Full Evaluation}} \underbrace{\text{S. Lalkovski, J. Timar and Z. Elekes}}_{\text{S. Lalkovski, J. Timar and Z. Elekes}} \underbrace{\text{Citation}}_{\text{NDS 161, 1 (2019)}} \underbrace{\text{Literature Cutoff Date}}_{1-\text{Apr-2019}}$

1978Ge05: Facility: Grenoble variable energy cyclotron; Beam: $E(\alpha)=24$ MeV; Target: 10 mg/cm² thick, enriched to 78% in ¹⁰²Pd; Detectors: two Ge(Li); Measured: γ , γ - γ coinc., γ - $\gamma(\theta)$, E γ , I γ ; Deduced: ¹⁰⁵Cd level scheme;

Also, from the same group: 104 Pd(α ,3n γ) at E(α)=43 MeV and 10 mg/cm² thick target, enriched to 80% in 104 Pd.

¹⁰⁵Cd Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	5/2+		
131.14 13	7/2+		
195.98 18	$(5/2^+)$		
260.00 16	$(7/2)^+$		
604.15 13	$(7/2)^+$		
766.9 4	$(5/2^+)$		
770.58 13	9/2+		
799.24 <i>21</i>	$11/2^+$		
832.06 14	9/2+		
1114.78 22	$(9/2^+)$		
1139.7 3	$(7/2^+)$		
1162.63 [#] 20	$(11/2)^{-}$		
1385.40 23	$(7/2^+, 9/2^+)$		
1578.38 21	$(13/2)^+$		
1685.9 <i>3</i>	15/2+		
1701.9 [#] 3	$(15/2)^{-}$		
1728.1 4	$(7/2, 9/2, 13/2^+)$		
2390.9 <i>3</i>	$(17/2)^+$		
2488.1 [#] 4	$(19/2)^{-}$		
2517.3 4	$(21/2^+)$	5 µs	$T_{1/2}$: from 1978Ge05, based on cyclotron off-beam activity, but the value seems to be
		- 1	from Heiser, C. et al., Symp. on Nuclear Spectroscopy and Nuclear Theory, Dubna, June 19-23, p.18.
2587.4 5	$(19/2)^+$		->>, F
2643.1 6	~ / /		
3342.8 [#] 4	(23/2)-		

 † From a least squares fit to Ey.

[‡] From the Adopted Levels.

[#] Member of $\Delta J=2$ intruder band, based on the $11/2^{-}$ state.

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [‡]	Comments
126.4 2	3.0 2	2517.3	$(21/2^+)$	2390.9	$(17/2)^+$	(E2)	Mult.: $A_2 = +0.02$ 9; $A_4 = -0.14$ 16 (1978Ge05).
131.1 2	100	131.14	$7/2^{+}$	0.0	$5/2^{+}$	(M1)	Mult.: $A_2 = -0.176 \ 14$; $A_4 = -0.033 \ 16 \ (1978Ge05)$.
166.4 2	3.6 <i>3</i>	770.58	$9/2^{+}$	604.15	$(7/2)^+$	(M1)	Mult.: $A_2 = -0.20 \ 8$; $A_4 = +0.11 \ 13 \ (1978Ge05)$.
195.9 2	26.0 14	195.98	$(5/2^+)$	0.0	$5/2^{+}$		
227.8 2	4.2 6	832.06	$9/2^{+}$	604.15	$(7/2)^+$	(M1)	Mult.: $A_2 = -0.31 \ 9$; $A_4 = 0.000 \ 14 \ (1978Ge05)$.
260.0 2	50.0 <i>3</i>	260.00	$(7/2)^+$	0.0	$5/2^{+}$	(M1+E2)	Mult.: $A_2 = +0.20 2$; $A_4 = +0.030 26$ (1978Ge05).
330.6 2	19.0 20	1162.63	$(11/2)^{-}$	832.06	$9/2^{+}$	(E1)	Mult.: $A_2 = -0.28 2$; $A_4 = -0.01 4$ (1978Ge05).
392.0 <i>3</i>	21.0 15	1162.63	$(11/2)^{-}$	770.58	$9/2^{+}$	(E1)	Mult.: $A_2 = -0.27 \ 3$; $A_4 = -0.02 \ 4 \ (1978Ge05)$.
^x 415.3 3	5.4 7						

 $\gamma(^{105}\text{Cd})$

				<u> </u>	¹⁰⁵ Cd) (continued	<u>l)</u>	
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	J_i^π	E_f	${\sf J}_f^\pi$	Mult. [‡]	Comments
472.8 <i>3</i>	3.5 6	604.15	$(7/2)^+$	131.14	7/2+		
510.6 3	20 10	770.58	9/2+	260.00	$(7/2)^+$		
539.3 2	33 3	1701.9	$(15/2)^{-}$	1162.63	$(11/2)^{-}$	(E2)	Mult.: $A_2 = +0.28 \ 3; \ A_4 = -0.13 \ 4$
570.9 <i>3</i>	6.1 6	766.9	(5/2 ⁺)	195.98	$(5/2^+)$	(E2)	(1978Ge05). Mult.: A_2 =+0.17 <i>10</i> ; A_4 =-0.20 <i>17</i> (1978Ge05)
604.1 2	30.0 20	604.15	$(7/2)^+$	0.0	5/2+	(M1)	Mult.: $A_2 = -0.73 \ 3; \ A_4 = +0.10 \ 5$ (1978Ge05).
639.5 2	30.0 5	770.58	9/2+	131.14	7/2+	(M1)	Mult.: $A_2 = -0.17 \ 3$; $A_4 = +0.16 \ 4$ (1978Ge05).
668.1 2	91 7	799.24	11/2+	131.14	7/2+	(E2)	Mult.: $A_2 = +0.30 2$; $A_4 = -0.12 3$ (1978Ge05).
700.9 2	6.1 6	832.06	9/2+	131.14	7/2+	(M1)	Mult.: $A_2 = -0.82 \ 10$; $A_4 = -0.13 \ 15$ (1978Ge05).
704.9 <i>3</i>	1.9 10	2390.9	$(17/2)^+$	1685.9	15/2+	(M1)	Mult.: $A_2 = -0.73 \ 30$; $A_4 = +0.4 \ 4$ (1978Ge05).
770.5 2	12.5 15	770.58	9/2+	0.0	5/2+	(E2)	Mult.: $A_2 = +0.35 5;$ $A_4 = -0.13 9(1978Ge05).$
779.2 3	3.7 10	1578.38	$(13/2)^+$	799.24	11/2+	(M1)	Mult.: $A_2 = -0.85 \ 15$; $A_4 = +0.1 \ 2$ (1978Ge05).
786.2 2	13.0 20	2488.1	(19/2) ⁻	1701.9	(15/2) ⁻	(E2)	Mult.: $A_2 = +0.29 5$; $A_4 = -0.14 8$ (1978Ge05).
807.8 2	26 3	1578.38	$(13/2)^+$	770.58	9/2+	(E2)	Mult.: $A_2 = +0.30 4$; $A_4 = -0.12 6$ (1978Ge05).
812.5 2	6.5 10	2390.9	$(17/2)^+$	1578.38	$(13/2)^+$	(E2)	Mult.: $A_2 = +0.14 \ 11$; $A_4 = -0.13 \ 18$ (1978Ge05).
832.2 2	60 6	832.06	9/2+	0.0	5/2+	(E2)	Mult.: $A_2 = +0.30 \ 3$; $A_4 = -0.08 \ 4$ (1978Ge05).
854.7 [#] 2	4.2 [#] 5	1114.78	(9/2+)	260.00	$(7/2)^+$	(M1+E2)	Mult.: $A_2 = -0.20 \ 17$; $A_4 = -0.16 \ 27$ (1978Ge05).
854.7 [#] 2	4.2 [#] 5	3342.8	(23/2) ⁻	2488.1	(19/2)-		Mult.: $A_2 = -0.20 \ 17$; $A_4 = -0.16 \ 27$ (1978Ge05).
886.6 <i>3</i>	40 4	1685.9	15/2+	799.24	11/2+	(E2)	Mult.: $A_2 = +0.29 \ 3$; $A_4 = -0.07 \ 4$ (1978Ge05).
896.0 <i>3</i>	15.0 15	1728.1	(7/2,9/2,13/2 ⁺)	832.06	9/2+	(E2)	Mult.: $A_2 = +0.33$ 7; $A_4 = +0.05$ 10 (1978Ge05).
901.5 <i>3</i>	7.0 10	2587.4	(19/2)+	1685.9	15/2+	(E2)	Mult.: $A_2 = +0.38 \ 10$; $A_4 = -0.29 \ 17$ (1978Ge05).
915.0 4	0.9 5	2643.1		1728.1	$(7/2, 9/2, 13/2^+)$		
943.6 4	2.0 4	1139.7	$(7/2^+)$	195.98	$(5/2^+)$		
1115.14	1./ 3	1114.78	$(9/2^+)$ $(7/2^+ 0/2^+)$	0.0	$\frac{3}{2}$		
1123.74	1.1 10 2 5 20	1303.40	(1/2, 3/2) $(7/2^+)$	200.00	(1/2) $5/2^+$		
1189.3 3	5.0 10	1385 40	$(7/2^+, 9/2^+)$	195 98	$(5/2^+)$		
1385.3 4	3.0 15	1385.40	$(7/2^+, 9/2^+)$	0.0	5/2+		

[†] From 1978Ge05. [‡] From angular distribution measurements in 1978Ge05.

[#] Multiply placed with undivided intensity. ^x γ ray not placed in level scheme.

102 Pd(α ,n γ) 1978Ge05 Legend Level Scheme $\begin{array}{c|c} & \mathbf{I}_{\gamma} < 2\% \times \mathbf{I}_{\gamma}^{max} \\ \hline & \mathbf{I}_{\gamma} < 10\% \times \mathbf{I}_{\gamma}^{max} \\ \hline & \mathbf{I}_{\gamma} > 10\% \times \mathbf{I}_{\gamma}^{max} \end{array}$ Intensities: Type not specified & Multiply placed: undivided intensity given ۲ وړ_{ي ک} دروه (23/2)-3342.8 ا ورور من المح (,(E2),0 (2)13.0 2643.1 2587.4 2517.3 1.0 (0) (10) (10) (10) $\frac{\overline{(19/2)^+}}{(21/2^+)}$ 126.4 5 µs (19/2) 2488.1 1518 25,5 04,6 $(17/2)^+$ 2390.9 1 896,0 (E2) 15,0 1 3393 (E2) 33 + 886 | + 886 | - (E2) 40 '3,> 1728.1 1701.9 (7/2,9/2,13/2+) 8-9-9-(15/2) ¥ 15/2+ 1685.9 $(13/2)^+$ 1578.38 13853 11893 3.0 11253 3.0 $\Box^{3920}_{(E_1)} e_{(E_1)}^{(1)} e_{(E_1)}^{(2)} e_{(E_1)}^{(1)} e_{(E_1)}^{$ (7/2+,9/2+) $-\left|\frac{\frac{l_{39}}{9_{3,9}e_{2,3}}}{\frac{l_{39}}{1^{3,6}e_{2,3}}}\right|$ 1385.40 $\frac{(11/2)^{-}}{(7/2^{+})}$ 1162.63 1139.7 832 200, C.) 227, An, O.) 81, C.) 82, C.) 82, C.) 82, C.) 84, (9/2+) 22^{3} $22^{$ 1114.78 $\frac{9/2^+}{11/2^+}$ 832.06 799.24 ¥ ÷. $\downarrow \frac{9_{4,7}}{3_{2,8}} \frac{9_{4,7}}{3_{9,1}}$ 0.00 $\frac{9/2^+}{(5/2^+)}$ 770.58 766.9 (7/2)+ + 260,0 (101,42).30 604.15 0.95 0.50 0.95 (11) 100 (7/2)+ 260.00 $(5/2^+)$ 195.98 3 7/2+ 131.14 1 5/2+ 0.0

 $^{105}_{\ 48}\mathrm{Cd}_{57}$