¹⁰⁴Ag ε decay (33.5 min) 1978Mu01,1971Do10

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Jean Blachot	NDS 108,2035 (2007)	30-Mar-2007					

¹⁰⁴Pd Levels

Parent: ¹⁰⁴Ag: E=6.9 4; $J^{\pi}=2^+$; $T_{1/2}=33.5 \text{ min } 20$; $Q(\varepsilon)=4279$ 4; $\mathscr{H}\varepsilon+\mathscr{H}\beta^+$ decay=100.0

E(level)	$J^{\pi \dagger}$	E(level)	$J^{\pi \dagger}$	E(level)	$J^{\pi \dagger}$	E(level)	$J^{\pi \dagger}$
0.0	0^{+}	2337.9 3	$1^+, 2^+$	2760.3 4	(4,5,6)	3116.5 5	$1,2^{(+)}$
555.81 4	2+	2457.3 4	(1,2,3)	2771.5 5		3194.1 7	$(3^{-}, 4^{-})$
1323.59? 6	4+	2478.3	1,2	2800.5 6	4+	3213.5 4	$1^+, 2^+, 3^+$
1333.59 8	0^{+}	2492.0 6		2810.0? 5	$2^+, 3^+$	3285.4 6	$1^+, 2^+, 3^+$
1341.68 5	2+	2521.4 4	2+	2918.3 4	(1,2,3)	3333.8 4	(3 ⁻ ,4 ⁻)
1792.3	0^{+}	2533.4 5	(1,2,3)	2960.5 7	$(2^+,3)$	3408.0 4	$1^+, 2^+, 3^+$
1794.3 9	1,2	2571.6 4	$(4,5)^+$	2975.5 5	(1,2,3)	3474.4 5	1,2,3
1820.65 16	3+	2622.2 5	(1,2,3)	2993.6 8	$2^+, 3^+$	3647.8? 5	
1999.1	(1,2)	2626.9 4	1,2	3008.3	$1^+, 2^+$	4009.2 5	$1^+, 2^+, 3^+$
2193.4 6		2642.6	(1,2,3)	3034.0 5	$(1,2^{+})$	4029.7 5	$1^+, 2^+, 3^+$
2245.4 5	2+	2677.8	4+	3078.6 5	$2^+, 3^+$		
2276.5 <i>3</i>	$1^+, 2^+$	2695.0 5	1 to 3	3097.8 5	1,2		
2298.9	4-	2714.8 6	(4,5,6)	3113.3 6	(1,2,3)		

 † From Adopted Levels.

ε, β^+ radiations

I β is based on the<0.07% isomeric branching reported by 1990Gu24. This value does not agree with %IT=33% 5 from 1971Mu22. E(β^+)=2600 100 (1959Gi63), 2705 15 (1960Nu02).

E(decay)	E(level)	$I\beta^+$ [†]	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$	Comments
(256 4)	4029.7		0.14 5	5.20 16	0.14 5	εK=0.8458 4; εL=0.1236 3; εM+=0.03058 9
(277 4)	4009.2		0.41 3	4.81 5	0.41 3	εK=0.8476 4; εL=0.1222 3; εM+=0.03019 8
(812 4)	3474.4		0.28 4	5.96 7	0.28 4	εK=0.8612; εL=0.11165 3; εM+=0.027198 8
(878 4)	3408.0		1.98 22	5.18 6	1.98 22	εK=0.8616; εL=0.11127 3; εM+=0.027090 6
(952 4)	3333.8		0.11 5	6.50 20	0.11 5	εK=0.8621; εL=0.11091 2; εM+=0.026988 6
(1001 4)	3285.4		1.2 2	5.51 8	1.2 2	εK=0.8624; εL=0.11070 2; εM+=0.026930 5
(1072 4)	3213.5		1.8 2	5.39 6	1.8 2	εK=0.8627; εL=0.11043 2; εM+=0.026853 4
(1092 4)	3194.1		0.01 <i>I</i>	7.7 5	0.01 1	εK=0.8628; εL=0.11036 2; εM+=0.026834 4
(1169 4)	3116.5		0.02 1	7.43 22	0.02 1	εK=0.8630; εL=0.11011 2; εM+=0.026762 4
(1173 4)	3113.3		0.04 1	7.13 12	0.04 1	εK=0.8630; εL=0.11010 2; εM+=0.026759 4
$(1188 \ 4)$	3097.8		0.018 10	7.49 25	0.018 10	εK=0.8630; εL=0.11004 2; εM+=0.026745 4
(1207 4)	3078.6		0.9 1	5.80 6	0.9 1	εK=0.8630; εL=0.10998 2; εM+=0.026727 4
(1252 4)	3034.0		0.2 1	6.49 22	0.2 1	εK=0.8628; εL=0.10981 2; εM+=0.026682 5
(1278 4)	3008.3	9.×10 ⁻⁵ 1	0.08 1	6.90 6	0.08 1	av Eβ=121.1 18; εK=0.8625; εL=0.10970 2; εM+=0.026652 5
(1292 4)	2993.6	0.00032 4	0.22 2	6.47 5	0.22 2	av $E\beta$ =127.5 18; ε K=0.8623; ε L=0.10963 2; ε M+=0.026634 6
(1310 4)	2975.5	0.001	0.7 1	5.98 7	0.7 1	av $E\beta$ =135.4 <i>18</i> ; ε K=0.8620; ε L=0.10954 <i>3</i> ; ε M+=0.026610 <i>6</i>
(1325 4)	2960.5	0.00042 3	0.18 1	6.58 4	0.18 <i>I</i>	av $E\beta$ =141.9 <i>I8</i> ; ε K=0.8616 <i>I</i> ; ε L=0.10946 <i>3</i> ; ε M+=0.026589 7
(1368 4)	2918.3	0.0018 3	0.45 6	6.21 7	0.45 6	av Eβ=160.2 18; εK=0.8603 2; εL=0.10919 3; εM+=0.026519 8

Continued on next page (footnotes at end of table)

¹⁰⁴₄₆Pd₅₈-1

¹⁰⁴Ag ε decay (33.5 min) **1978Mu01,1971Do10** (continued)

ϵ, β^+ radiations (continued)

E(decay)	E(level)	$I\beta^+$ †	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger}$	Comments
(1485 4)	2800.5	0.0007 1	0.06 1	7.17 8	0.06 1	av $E\beta$ =211.1 18; ε K=0.8533 4; ε L=0.10803 6; ε M+=0.02623 2
(1514 4)	2771.5	0.001	0.09 1	7.01 6	0.09 1	av $E\beta$ =223.6 <i>18</i> ; ε K=0.8506 <i>4</i> ; ε L=0.10763 <i>6</i> ; ε M+=0.02613 2
(1526 4)	2760.3	0.0049 4	0.29 2	6.51 4	0.29 2	av $E\beta$ =228.5 <i>I</i> 8; ε K=0.8495 <i>5</i> ; ε L=0.10746 <i>7</i> ;
(1571 4)	2714.8	0.002	0.09 1	7.04 6	0.09 1	av $E\beta = 248.2$ 18; $\varepsilon K = 0.8441$ 6; $\varepsilon L = 0.10669$ 8;
(1591 4)	2695.0	0.042 5	1.53 19	5.81 7	1.57 20	av $E\beta$ =256.7 <i>I</i> 8; ε K=0.8414 <i>6</i> ; ε L=0.10632 <i>9</i> ;
(1643 4)	2642.6	0.002	0.06 1	7.26 8	0.06 1	ϵ M1+=0.02381 2 av E β =279.3 18; ϵ K=0.8330 8; ϵ L=0.1052 1;
(1659 4)	2626.9	0.02	0.5 1	6.35 9	0.5 1	$\varepsilon M^{+}=0.02553.5$ av E β =286.1 <i>I</i> 8; εK =0.8302 8; εL =0.1048 <i>I</i> ;
(1664 4)	2622.2	0.033 2	0.79 5	6.14 4	0.82 5	$\varepsilon M^{+}=0.02543$ 3 av E β =288.2 <i>18</i> ; εK =0.8293 8; εL =0.1047 <i>1</i> ;
(1714 4)	2571.6	0.062 4	1.12 7	6.02 4	1.18 7	$\varepsilon M +=0.02540$ 3 av E β =310.1 <i>18</i> ; εK =0.8189 <i>9</i> ; εL =0.10327 <i>12</i> ;
(1753 4)	2533.4	0.054 7	0.80 10	6.18 7	0.85 11	$\varepsilon M + = 0.02506 \ 5$ av E $\beta = 326.7 \ 18; \ \varepsilon K = 0.8099 \ 11; \ \varepsilon L = 0.10208 \ 14;$
(1765 4)	2521.4	0.013 1	0.19 2	6.82 5	0.20 2	$\varepsilon M +=0.024774$ av E β =331.9 18; εK =0.8068 11; εL =0.10169 14;
(1794 4)	2492.0	0.005 1	0.06 1	7.36 8	0.06 1	εM +=0.02467 4 av E β =344.7 18; εK =0.7990 12; εL =0.10066 15;
(1808 4)	2478.3	0.007 1	0.08 1	7.19 6	0.09 1	εM +=0.02442 4 av E β =350.7 18; εK =0.7952 12; εL =0.10016 15;
(1829 4)	2457.3	0.031 2	0.33 2	6.60 4	0.36 2	εM +=0.02430 4 av E β =359.9 <i>18</i> ; εK =0.7890 <i>13</i> ; εL =0.09936 <i>16</i> ;
(1948 4)	2337.9	0.47 7	3.0 4	5.69 7	3.5 5	εM +=0.02411 4 av E β =412.1 18; εK =0.7489 15; εL =0.09418 20;
(1987 4)	2298.9	0.050 3	0.28 2	6.75 4	0.33 2	ε M+=0.02284 5 av E β =429.2 18; ε K=0.7341 16; ε L=0.09227 21;
(2009 4)	2276.5	0.74 7	3.9 <i>3</i>	5.62 5	4.6 4	ε M+=0.02238 5 av E β =439.0 18; ε K=0.7252 17; ε L=0.09113 21;
(2041 4)	2245.4	0.16 2	0.74 9	6.35 6	0.90 11	ε M+=0.02210 5 av E β =452.7 18; ε K=0.7124 17; ε L=0.08950 22;
(2093 4)	2193.4	0.055 20	0.22 8	6.91 <i>17</i>	0.27 10	ε M+=0.02171 6 av E β =475.6 18; ε K=0.6902 18; ε L=0.08667 23;
(2287 4)	1999.1	0.030 2	0.069 4	7.48 <i>4</i>	0.099 6	ε M+=0.02102 6 av E β =561.8 18; ε K=0.6006 20; ε L=0.07528 25;
(2465 4)	1820.65	0.23 4	0.33 6	6.86 9	0.56 10	ε M+=0.01825 6 av E β =641.6 18; ε K=0.5160 19; ε L=0.06459 24;
(2492 4)	1794.3	1.8 2	2.5 2	5.99 5	4.3 4	ε M+=0.01566 6 av E β =653.4 19; ε K=0.5038 19; ε L=0.06305 24;
(2944 4)	1341.68	1.1 3	0.63 15	6.74 11	1.7 4	ε M+=0.01529 6 av E β =858.5 19; ε K=0.3229 14; ε L=0.04030 17;
(3730 4)	555.81	58 <i>3</i>	12 <i>I</i>	5.67 4	70 4	ε M+=0.00977 4 av E β =1221.5 19; ε K=0.1487 6; ε L=0.01851 7; ε M+=0.004482 17

 † Absolute intensity per 100 decays.

104 Ag ε decay (33.5 min) 1978Mu01,1971Do10 (continued)

$\gamma(^{104}\text{Pd})$

I γ normalization: assuming the sum of γ 's to the g.s.=99.93 and no ε to g.s. Activity from ¹⁰⁶Cd(p,2pn), ¹⁰⁷Ag(p,p3n), ¹⁰⁴Pd(p,n), ¹⁰³Rh(³He,2n) (1971Do10). Measured γ , $\gamma\gamma$ Ge(Li) pair spectrometer (1978Mu01). See also ¹⁰⁴Ag IT decay.

Eγ	I_{γ}^{\ddagger}	E _i (level)	J_i^π	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult.	α #	Comments
450.3 <i>3</i> 479.2 <i>3</i> 555 8 2	0.12 3	1792.3 1820.65 555.81	0^+ 3 ⁺ 2 ⁺	1341.68 1341.68	2^+ 2^+ 0^+	M1,E2	0.00447	$\alpha(K) = 0.00384 \cdot \alpha(1) = 0.00048$
$767.6^{\textcircled{0}}{2}$	1.0 3	1323.59?	2 4 ⁺	555.81	0 2 ⁺	E2 E2	0.00190	$\alpha(K)=0.00164; \ \alpha(L)=0.0002$
777.7 3	0.7 1	1333.59	0+	555.81	2+			
785.7 2	2.1 3	1341.68	2^+ 1+ 2+	555.81	$2^+_{2^+}$			
934.02	0.30 5	2270.5	1 ,2 1-	1341.00	∠ ∕1+			
996.1 <i>3</i>	0.55 5	2337.9	$1^+, 2^+$	1341.68	2^{+}			
1133.1 [†] 3	0.19	2457.3	(1,2,3)	1323.59?	4+			
1191.5 [@] 4	0.20 5	2533.4	(1,2,3)	1341.68	2^{+}			
1238.8 3	4.3 3	1794.3	1,2	555.81	2+			
1247.2 3	0.52	2571.6	$(4,5)^+$	1323.59?	4^+ 2+			
1205.2 5	0.30 10	2622.05	(123)	1323 592	Δ^{+}			
1341.8 3	1.8 2	1341.68	2^+	0.0	0^{+}			
1354.3 [†] 3	0.05	2677.8	4+	1323.59?	4+			
1382.4 [†] 3	0.44	4009.2	$1^+, 2^+, 3^+$	2626.9	1,2			
1418.5 [†] 3	0.33	2760.3	(4,5,6)	1341.68	2^{+}			
1636.1 5	0.20	2960.5	(2+,3)	1323.59?	4^{+}			
1637.5 [†] 5	0.3 1	2193.4		555.81	2^{+}			
1652.1 [†] 5	0.18	2993.6	2+,3+	1341.68	2+			
1689.5 4	1.0 1	2245.4	2^+ 1+ 2+	555.81	$2^+_{2^+}$			
1720.04	0.35	2270.5	$^{1},^{2}$ $^{-}$	555.81	$\frac{2}{2^{+}}$			
1781.8 5	2.3 5	2337.9	$1^+, 2^+$	555.81	$\frac{2}{2^{+}}$			
1794.6 4	0.45 5	1794.3	1,2	0.0	0^{+}			
1869.7 5	0.014	3194.1	(3 ⁻ ,4 ⁻)	1323.59?	4+			
1890.6 ^w 4	0.15 5	3213.5	1+,2+,3+	1323.59?	4+			
1900.9 5	0.21	2457.3	(1,2,3)	555.81	2+			
1930.1 3	0.07	2492.0	2+	555.81	2 · 2+			
1905.0 5	0.22	2521.4	(1.2.3)	555.81 555.81	$\frac{2^{+}}{2^{+}}$			
1992.0 [†] 5	0.07	3333.8	$(3^{-},4^{-})$	1341.68	2^{+}			
1999.1 5	0.11	1999.1	(1,2)	0.0	0^+			
2015.8 [†] 5	0.79	2571.6	$(4,5)^+$	555.81	2+			
2065.9 5	0.25 5	3408.0	1+,2+,3+	1341.68	2+			
2086.8 5	0.07	2642.6	(1,2,3)	555.81 555.81	2^+ 2^+			
2139.23	0.10	2095.0	(456)	555.81	∠ 2+			
2130.9 5	0.10	2714.0	(+,3,0)	555.81	$\frac{2}{2^{+}}$			
2244 6 5	0.10	2800 5	4+	555 81	$\frac{2}{2^{+}}$			
2254.2 [@] 5	0.1 1	2810.0?	2+,3+	555.81	$\frac{-}{2^{+}}$			

Continued on next page (footnotes at end of table)

1978Mu01,1971Do10 (continued)

	$\gamma(^{104}\text{Pd})$ (continued)										
Eγ	I_{γ} ‡	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Eγ	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}
2276.7 <i>4</i> 2338.3 <i>3</i> 2362 4 <i>4</i>	2.7 2 1.0 <i>1</i> 0.50 5	2276.5 2337.9 2918 3	$1^+, 2^+$ $1^+, 2^+$ (1, 2, 3)	0.0 0.0 555 81	$0^+ 0^+ 0^+ 2^+$	2777.9 [†] 5 2852.5 5 2918 8 5	0.06 0.35 5 0.20 4	3333.8 3408.0 3474 4	$(3^{-},4^{-})$ 1 ⁺ ,2 ⁺ ,3 ⁺ 1 2 3	555.81 555.81 555.81	2^+ 2^+ 2^+
2419.6 <i>4</i>	0.8 1	2975.5 2003.6	(1,2,3) (1,2,3) $2^+ 3^+$	555.81 555.81	2^{+} 2^{+}	$3008.3^{\dagger} 5$ 3034.0.5	0.09	3008.3	$1^{+},2^{+}$	0.0	0^+
2478.3 [†] 5	0.00	2993.0 2478.3	2,5 1,2 2+2+	0.0		3097.8 [†] 5	0.23 5	3097.8	(1,2) 1,2 1,2(+)	0.0	0^{+}
2522.74 $2557.4^{\dagger}5$ 2626.94 2657.55	0.95 <i>10</i> 0.05 1.0 <i>1</i> 0.35 5	3078.6 3113.3 2626.9 3213.5	$2^{+},3^{+}$ (1,2,3) 1,2 $1^{+},2^{+},3^{+}$	555.81 555.81 0.0 555.81	2^+ 2^+ 0^+ 2^+	3116.5 5 3213.6 5 3407.8 5 3473.9 5	0.024 1.60 20 1.60 20 0.11 1	3116.5 3213.5 3408.0 3474.4	$1,2^{(1)}$ $1^+,2^+,3^+$ $1^+,2^+,3^+$ 1,2,3	0.0 0.0 0.0 0.0	0^{+} 0^{+} 0^{+}
2705.3 [†] 5 2729.5 5	0.15 5 1.30 <i>15</i>	4029.7 3285.4	$1^+, 2^+, 3^+$ $1^+, 2^+, 3^+$	1323.59? 555.81	- 4 ⁺ 2 ⁺	3647.8 [@] 5 4009.0 [†] 5	0.03 <i>3</i> 0.016	3647.8? 4009.2	1+,2+,3+	0.0 0.0	0 ⁺ 0 ⁺

¹⁰⁴Ag ε decay (33.5 min)

[†] From 1978Mu01.

[‡] For absolute intensity per 100 decays, multiply by 0.90 5.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified. ^(a) Placement of transition in the level scheme is uncertain.

¹⁰⁴Ag ε decay (33.5 min) 1978Mu01,1971Do10

 $^{104}_{46}\text{Pd}_{58}$

6