104 Rh β^- decay (4.34 min)

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jean Blachot	NDS 108,2035 (2007)	30-Mar-2007

Parent: ¹⁰⁴Rh: E=128.9679 5; $J^{\pi}=5^+$; $T_{1/2}=4.34 \text{ min } 3$; $Q(\beta^-)=2440 5$; $\%\beta^-$ decay=0.13 *I* See also ¹⁰⁴Rh IT decay.

From 1971Do10, 1972Ok01, 1972Si08, 1974Gi11. Others: 1967Fe03, 1963Wi10.

 $\gamma\gamma$ -coincidence measurements by 1972Si08 are summarized on the decay scheme. Others: 1963Wi10, 1955Bu33. $\gamma\gamma(\theta)$: 1972Ok01, 1972Si08.

The total β branching as estimated from the equilibrium source intensities reported by 1972Si08 and 1974Gi11 and the adopted decay scheme is I β =0.13%. This gives I β (1323 level)=0.062%, in good agreement with≈0.07% reported by 1960Bu05.

¹⁰⁴Pd Levels

E(level)	$J^{\pi \dagger}$	E(level)	$J^{\pi \dagger}$	E(level)	$J^{\pi \dagger}$	E(level)	$J^{\pi \dagger}$
0.0	0^{+}	1341.68 5	2+	1941.6? 5	_	2265.31 7	4+
555.81 4	2+	1792.86 6	0^{+}	2082.38 6	4+	2444.5? <i>3</i>	$4^+, 5^+, 6^+$
1323.59 6	4+	1793.4 2	2^{+}	2125.5?			
1333.2	0^{+}	1820.65 16	3+	2181.58 6	4+		

[†] From Adopted Levels.

β^{-} radiations

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft			Comments
310 8	2265.31	0.013 2	5.8 1	av E β =	90 <i>3</i>	
393 8	2181.58	0.018 2	6.2 1	av $E\beta =$	118 <i>3</i>	
493 8	2082.38	0.040 3	6.1 <i>1</i>	av Eβ=	152 <i>3</i>	
1251 8	1323.59	0.062 10	7.3 1	av E β =	456 4	

[†] Absolute intensity per 100 decays.

$\gamma(^{104}\text{Pd})$

I v normalization: from Σ I(γ +ce) to g.s.=0.13 *l*. No I β to g.s.

Eγ [‡]	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Comments
332.6 [#] 2	0.11	2125.5?		1793.4	2+	
443.5 [@] 5	0.07 3	2265.31	4+	1820.65	3+	
451.5 [#] 2	0.29 3	1793.4	2+	1341.68	2^{+}	
460.5 [#] 4	0.08	1793.4	2^{+}	1333.2	0^+	
479.4 ^a 5	0.05 3	1820.65	3+	1341.68	2^{+}	
488.5 [#] 3	0.11	1820.65	3+	1333.2	0^+	
497.8 [#] 8	0.09	1820.65	3+	1323.59	4+	
555.81 4	100	555.81	2^{+}	0.0	0^+	
618.0 [@] 5	0.03 3	1941.6?		1323.59	4+	
623.2 [@] 5	0.06 3	2444.5?	$4^+, 5^+, 6^+$	1820.65	3+	
740.69 5	0.66 4	2082.38	4+	1341.68	2+	
758.78 6	0.72 4	2082.38	4+	1323.59	4+	$\delta = 0.05 \ 13 \text{ or } 0.77 \ 11, \ \gamma \gamma(\theta) \ 1972 \text{Ok} 01.$

Continued on next page (footnotes at end of table)

$^{104}\mathbf{Rh}\,\beta^-$ decay (4.34 min) (continued)

γ (¹⁰⁴Pd) (continued)

E_{γ}^{\ddagger}	I_{γ} †&	E _i (level)	\mathbf{J}_i^{π}	E _f J	J_f^{π}	Comments
767.78 [#] 5	5.0 2	1323.59	4+	555.81 2	2+	
777.2 [#] 2	0.29 3	1333.2	0^+	555.81 2	2+	
785.88 [#] 5	0.66 4	1341.68	2+	555.81 2	2+	$\delta > 10$ or < -12 , $\gamma \gamma(\theta)$ 1972Si08. Other: 1972Ok01.
839.90 10	0.050 15	2181.58	4+	1341.68 2	2^{+}	
858.00 6	0.55 4	2181.58	4^{+}	1323.59 4	1 ⁺	$\delta = -0.28 \ 11 \text{ or } 1.7 \ 4, \ \gamma \gamma(\theta) \ 1972 \text{Ok} 01.$
923.62 10	0.14 2	2265.31	4^{+}	1341.68 2	2^{+}	
941.72 6	0.52 3	2265.31	4^{+}	1323.59 4	4+	$\delta = -0.41 \ 14, \gamma \gamma(\theta) \ 1972 \text{Ok} 01.$
1237.05 5	3.2 3	1792.86	0^{+}	555.81 2	2+	
1238.0	≈0.5	1793.4	2^{+}	555.81 2	2+	I_{γ} : deduced from 33.5-min ¹⁰⁴ Ag decay.
1264.85 15	0.03 1	1820.65	3+	555.81 2	2^{+}	
1341.67 7	0.50 3	1341.68	2^{+}	0.0 0)+	
1526.60 6	0.61 4	2082.38	4^{+}	555.81 2	2^{+}	
1625.76 7	0.30 2	2181.58	4+	555.81 2	2+	
1708.0 [@] 5	0.005 5	2265.31	4+	555.81 2	2+	
1793.2 [#] 2	0.05 1	1793.4	2^{+}	0.0 0)+	

[†] Relative photon intensity from 4.34 min+42.3 s ¹⁰⁴Rh equilibrium sources.
[‡] From 1972Si08.
[#] From 1974Gi11.
[@] From 1971Do10.
[&] For absolute intensity per 100 decays, multiply by 0.00130 *17*.
^a Placement of transition in the level scheme is uncertain.

104 Rh β^- decay (4.34 min)

