$^{103}{ m Y}\,{\it eta}^{-}\,{ m decay}$ 1996Lh04

		History		
Type	Author	Citation	Literature Cutoff Date	
Full Evaluation	D. De Frenne	NDS 110, 2081 (2009)	1-Mar-2009	

Parent: 103 Y: E=0; J^{π}=(5/2⁺); T_{1/2}=0.23 s 2; Q(β ⁻)=9440 SY; % β ⁻ decay=100.0 Source produced by U(p,F). Mass-separated source. Measured $\gamma\gamma$ (t), $\beta\gamma$ (t).

 $^{103}\mathrm{Zr}$ Levels

 β : % β n=8 3 and $T_{1/2}$ 1/2=0.23 s. The log ft's were calculated using $Q(\beta^-)$ =9.44 MeV are uncertain since $I(258.9\gamma)$ =20-6.

E(level)	$J^{\pi \dagger}$	$T_{1/2}$	Comments
0	$(5/2^{-})$	1.3 s <i>I</i>	Suggested Nilsson configuration: 5/2[532].
109.1 <i>3</i>	$(7/2^{-})$	<3 ns	$T_{1/2}$: from $\beta \gamma \gamma(t)$ using 109.1 γ .
258.9	$(3/2^+)$		Authors propose a log $ft=4.9$ from an estimated I β =71.
			Suggested Nilsson configuration: 3/2[411].
357.1 <i>4</i>	$(5/2^+)$	<3 ns	$T_{1/2}$: from $\beta \gamma \gamma(t)$ using 98.2 γ .
			Authors propose a log $ft=5.4$ from an estimated I β =21.

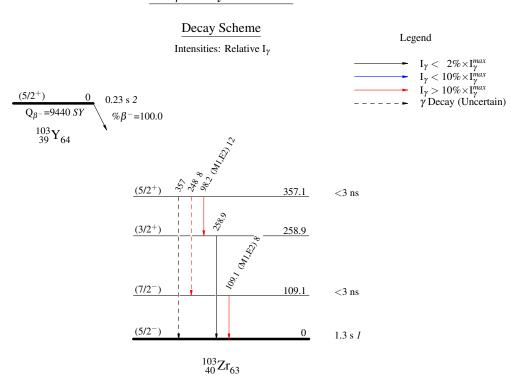
[†] From Adopted Levels.

$\gamma(^{103}{\rm Zr})$

Iy normalization: no direct β^- g.s. assumed. It is assumed that the estimated yield of 12% for 103 Y corresponds to the measured rate for the 98.2 keV γ . Large decay energy and feeding from (5/2⁺) parent indicate significant unobserved g.s. feeding from high-lying levels.

E_{γ}	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult. [†]	$\alpha^{\#}$	Comments
98.2 <i>3</i>	12 2	357.1	$(5/2^+)$	258.9	$(3/2^+)$	(M1,E2)	0.7 5	
109.1 <i>3</i>	8 2	109.1	$(7/2^{-})$	0	$(5/2^{-})$	(M1,E2)	0.5 4	
248 [@]	8	357.1	(5/2+)	109.1	(7/2 ⁻)			Iy estimated from intensity balance of 109 keV level assuming no direct β feeding of 109 keV level. Observation hindered by the presence of a 247.6 keV γ in 103 Nb.
258.9 <i>3</i>		258.9	$(3/2^+)$	0	(5/2-)			Transition obscured by impurity. I γ =20-60 estimated by the authors.
357 [@]		357.1	(5/2+)	0	(5/2-)			γ expected from systematics but masked by the presence of a 357.7 keV γ transition in 103 Nb.

[†] Tentatively deduced from level scheme based on level systematics.


[‡] Absolute intensity per 100 decays.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[®] Placement of transition in the level scheme is uncertain.

¹⁰³Y β^- decay 1996Lh04

 $^{103}_{40}\mathrm{Zr}_{63}$ -2

