¹⁰³Pd ε decay (16.991 d)

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	D. De Frenne	NDS 110, 2081 (2009)	1-Mar-2009

Parent: ¹⁰³Pd: E=0.0; $J^{\pi}=5/2^+$; $T_{1/2}=16.991 d$ *19*; $Q(\varepsilon)=543.1 8$; $\mathscr{K}\varepsilon$ decay=100.0 1969Gr13: ¹⁰³Pd activity from ¹⁰²Pd(n, γ), ¹⁰³Rh(p,n), ¹⁰³Rh(d,2n). Measured: $T_{1/2}$, E γ , I γ , Ice, I-Auger. Deduced: ¹⁰³Rh levels, log ft, J^{π} , α . Natural and enriched targets.

1969Zo02: ¹⁰³Pd activity from ¹⁰²Rh(d,2n). Enriched target. Measured: E γ , 7I γ , $\gamma\gamma(\theta)$, Ice, α . Deduced: ¹⁰³Rh levels, J^{π} .

1976Ma37: ¹⁰³Pd activity from ¹⁰²Pd(n, γ). Enriched target. Measured: E γ , I γ , X γ -coin. Deduced: ¹⁰³Rh levels, log ft, J^{π}, α , δ, B(E2), B(M1).

Others: 1954Ri09, 1955Sa16, 1955Av11, 1970NiZV, 1974HeYW.

¹⁰³Rh Levels

E(level) [‡]	$J^{\pi \dagger}$	T _{1/2}
0.0	$1/2^{-}$	stable
39.748 8	$7/2^{+}$	
93.038 <i>13</i>	$9/2^{+}$	
295.00 5	$3/2^{-}$	
357.43 4	$5/2^{-}$	
536.832 15	$5/2^{+}$	

[†] From Adopted Levels.

[‡] Calculated from the given gammas using a least-squares procedure.

ε radiations

E(decay)	E(level)	Ιε [†]	Log ft	Comments
(6.3 8)	536.832	0.0040 2	5.1 2	εL=0.52 9; εM+=0.48 9
				Additional information 1.
(185.7 8)	357.43	0.0248 8	8.5 2	εK=0.8393 2; εL=0.1291 2; εM+=0.03159 4
(248.1 8)	295.00	0.00044 11	10.5 <i>1</i>	εK=0.8476; εL=0.12266 6; εM+=0.02977 2
(503.4 8)	39.748	99.9 <i>1</i>	5.8 2	εK=0.8589; εL=0.11382 2; εM+=0.027312 4
(543.1 [‡] 8)	0.0	≤0.1	$\geq 8.9^{1u}$	εK=0.8443; εL=0.12520 4; εM+=0.03055 1

[†] Absolute intensity per 100 decays.

[‡] Existence of this branch is questionable.

$\gamma(^{103}\text{Rh})$

Iy normalization: From $\Sigma I(\gamma + ce)$ to g.s.=100 assuming negligible (<0.1%) ε transition to g.s. (5/2⁺ to 1/2⁻ transition). $\alpha(K)\exp=ce(K)(1969Gr13)/I\gamma(1976Ma37)$ normalized to $\alpha(K)\exp(295\gamma)=0.0186$ from ¹⁰³Ru β^- decay.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \ddagger @}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α ^{&}	Comments
39.748 8	100	39.748	7/2+	0.0	1/2-	E3	1404 20	$\alpha(K)$ = 139.4; $\alpha(L)$ = 1043; $\alpha(M)$ = 210.5 E _{γ} : from 1969Gr13. Mult.: from L1:L2:L3 ratios and K/L=0.143 <i>12</i> (1969Gr13). Other: K/L=0.135 <i>22</i> (1976Ma37).
53.29 1	0.04 4	93.038	9/2+	39.748	7/2+			

$^{103}\text{Pd}\ \varepsilon$ decay (16.991 d) (continued)

$\gamma(^{103}\text{Rh})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \ddagger @}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α &	Comments
62.41 3	1.52 5	357.43	5/2-	295.00	3/2-	M1	1.314 19	$\begin{array}{l} \alpha(\text{L}) \exp = 0.15 \ 3 \\ \alpha(\text{K}) = \ 1.151; \ \alpha(\text{L}) = \ 0.1414; \ \alpha(\text{M}) = \\ 0.0263; \ \alpha(\text{N}+) = 0.00513 \\ \text{E}_{\gamma}: \ \text{others:} \ 62.30 \ 12 \ (1969 \text{Gr}13), \ 62.5 \ 1 \\ (1974 \text{HeYW}). \end{array}$
241.88 <i>5</i> 294.98 <i>15</i> 317.72 <i>5</i>	0.0007 7 4.1 <i>1</i> 0.022 <i>1</i>	536.832 295.00 357.43	5/2+ 3/2- 5/2-	295.00 0.0 39.748	3/2 ⁻ 1/2 ⁻ 7/2 ⁺			Mult.: from α (L)exp and L1/(L2+L3).
357.45 8	32.3 10	357.43	5/2-	0.0	1/2-	E2	0.01588 23	α (K)exp=0.010 2 α (K)=0.01369; α (L)=0.00180; α (M)=0.00034 E _y : others: 356.98 9 (1969Gr13), 357.5 I (1974HeYW). Mult.: From 1976Ma37.
443.79 <i>5</i> 497.080 <i>13</i>	0.022 <i>1</i> 5.8 2	536.832 536.832	5/2 ⁺ 5/2 ⁺	93.038 39.748	9/2 ⁺ 7/2 ⁺			

[†] From 1976Ma37, unless noted otherwise.
[‡] Additional information 2.
[#] From 1976Ma37 if not noted otherwise.
[@] For absolute intensity per 100 decays, multiply by 6.83×10⁻⁴ 7.
[&] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

$^{103}\mathbf{Pd}\ \boldsymbol{\varepsilon}\ \mathbf{decay}\ (\mathbf{16.991}\ \mathbf{d})$

Decay Scheme

 $^{103}_{45} Rh_{58}$

3