|                                                                            |                                                                                              | Type                                                     | Aut                                                             | History<br>thor Citation Literature Cutoff Date                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|                                                                            |                                                                                              | Full Evaluation                                          | D. De                                                           | Frenne NDS 110, 2081 (2009) 1-Mar-2009                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| $Q(\beta^{-}) = -2685 5;$<br>Note: Current ev<br>$Q(\beta^{-}) = -2688 17$ | S(n)=7625.4<br>aluation has<br>7; S(n)=7625                                                  | 4 8; S(p)=7994 5<br>used the followi<br>5.4 8; S(p)=7993 | 5; $Q(\alpha) = -5$<br>ng Q reco<br>5; $Q(\alpha) = -5$         | 2288.1 24 2012Wa38<br>rd.<br>-2287.0 23 2003Au03                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
|                                                                            |                                                                                              |                                                          |                                                                 | <sup>103</sup> Pd Levels                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
|                                                                            |                                                                                              |                                                          |                                                                 | Cross Reference (XREF) Flags                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
|                                                                            |                                                                                              | A<br>B<br>C                                              | <sup>103</sup> Ag<br><sup>102</sup> Pd(c<br><sup>103</sup> Rh(j | $ \begin{aligned} \varepsilon & \text{decay (65.7 min)} & D & {}^{104}\text{Pd}(d,t), ({}^{3}\text{He},\alpha) \\ d,p) & E & (\text{HI},\text{xn}\gamma) \\ p,n\gamma) & F & {}^{102}\text{Pd}(n,\gamma) \end{aligned} $                                                                                                                                |  |  |  |  |  |  |
| E(level) <sup>†</sup>                                                      | $J^{\pi \ddagger}$                                                                           | T <sub>1/2</sub>                                         | XREF                                                            | Comments                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| 0.0#                                                                       | 5/2+                                                                                         | 16.991 d <i>19</i>                                       | ABCDE                                                           | %ε=100<br>T <sub>1/2</sub> : from 1981Va11. Others: 16.961 d <i>16</i> (1975Cz03), 16.9 d <i>1</i> (1968Pa24)<br>18.4 d 5 (1969Gr13), 17.5 d 5 (1954Ri09), 17.0 d 4 (1953Me24).<br>J <sup>π</sup> : 3/2 <sup>+</sup> ,5/2 <sup>+</sup> from L(d,p),(d,t)=2; allowed ε transition in 7/2 <sup>+ 103</sup> Ag decay<br>with log $fr=5.9$ excludes $3/2^+$ |  |  |  |  |  |  |
| 118.736 17                                                                 | 3/2+                                                                                         | 0.70 ns <i>3</i>                                         | ABC E                                                           | when $\log_{1/-5.9}$ excludes $3/2^{-1}$ .<br>$T_{1/2}$ : from (148 $\gamma$ )(119 $\gamma$ )(t) (1969Ha03). Others: 0.63 ns 6 $T_{1/2}$ (1972Bf01),<br>1.9 ns 4 (1969Ba02).<br>$W_{-3}/2^{+} 5/2^{+}$ from L (d p)=2: 5/2^{+} aliminated by 110 $\gamma$ (0)                                                                                           |  |  |  |  |  |  |
| 243.959 <sup>@</sup> 16                                                    | 7/2+                                                                                         |                                                          | ABCDE                                                           | $J^{\pi}$ : $7/2^+$ , $9/2^+$ from L(d,t), (d,p)=4; $9/2^+$ eliminated by $244\gamma(\theta)$ and linear                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| 266.861 17                                                                 | 5/2+                                                                                         |                                                          | ABCDE                                                           | pol in <sup>94</sup> Zr( <sup>12</sup> C,3n).<br>XREF: B(272)D(269).<br>J <sup><math>\pi</math></sup> : 3/2 <sup>+</sup> ,5/2 <sup>+</sup> from L(d,t),(d,p)=2; log <i>ft</i> =5.3 in 7/2 <sup>+</sup> <sup>103</sup> Ag $\varepsilon$ decay rules                                                                                                      |  |  |  |  |  |  |
| 498.948 20                                                                 | (1/2 <sup>+</sup> )                                                                          |                                                          | ABCD                                                            | out $5/2^{-1}$ .<br>XREF: B(499)D(499).<br>J <sup><math>\pi</math></sup> : consistent with I $\gamma$ (M1)-branching mainly to $3/2^{+}$ state and negligible $\varepsilon$ branching; could be member of a possibly unresolved doublet observed at 500 keV with L(d t)=(0.2) and L(d t)=0.                                                             |  |  |  |  |  |  |
| 504.24 7                                                                   | (3/2)+                                                                                       |                                                          | ABCD                                                            | <ul> <li>XREF: B(499)D(499).</li> <li>Could be member of the probably unresolved doublet observed at 499 keV with L(d,t)=(0,2) and L(d,p)=0.</li> <li>J<sup>π</sup>: consistent with M1 γ-decays to 3/2<sup>+</sup> and 5/2<sup>+</sup> states and negligible ε branching.</li> </ul>                                                                   |  |  |  |  |  |  |
| 531.972 <sup>&amp;</sup> 22                                                | 7/2+                                                                                         |                                                          | A CDE                                                           | $J^{\pi}$ : M1 $\gamma$ to 5/2 <sup>+</sup> . M1+E2 $\gamma$ from 9/2 <sup>+</sup> and band assignment. L>3 in (d,t) 2008Ro13.                                                                                                                                                                                                                          |  |  |  |  |  |  |
| 535 5<br>625.637 25<br>698.746 22                                          | 3/2 <sup>+</sup> ,5/2 <sup>+</sup><br>3/2 <sup>+</sup> ,5/2 <sup>+</sup><br>5/2 <sup>+</sup> |                                                          | B D<br>ABC E<br>ABCD                                            | $J^{\pi}$ : L=2 in (d,p),(d,t).<br>$J^{\pi}$ : L(d,t),(d,p)=2.<br>XREF: B(703).<br>$J^{\pi}$ : M1(+E2) decay to 3/2 <sup>+</sup> ; log <i>tt</i> =7.0 excludes 1/2 <sup>+</sup> and 3/2 <sup>+</sup> .                                                                                                                                                  |  |  |  |  |  |  |
| 718.02 <sup>#</sup> 5                                                      | 9/2+                                                                                         |                                                          | ACE                                                             | $J^{\pi}$ : member of rotational band built on g.s.; E2 to $5/2^+$ states and M1+E2 to $7/2^+$ states                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
| 727.31 13                                                                  | $1/2^{+}$                                                                                    |                                                          | ABCD                                                            | XREF: D(725).                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| 784.79 <sup>a</sup> 10                                                     | 11/2-                                                                                        | 25 ns 2                                                  | BCDE                                                            | J <sup>*</sup> : L(d,t)=(0,2) and L(d,p)=0.<br>$\mu$ =1.05 6 (1989Ra17,2005St24)<br>XREF: B(787)D(778).<br>T <sub>1/2</sub> : from 67 $\gamma$ (t) pulsed beam in (p,n $\gamma$ ) (1975Di09).<br>J <sup>\pi</sup> : L(d,t).(d,p)=5. M2 decay to 7/2 <sup>+</sup> .                                                                                      |  |  |  |  |  |  |
| 815 2<br>884.67 5                                                          | 3/2 <sup>+</sup> ,5/2 <sup>+</sup><br>3/2 <sup>+</sup> ,5/2 <sup>+</sup>                     |                                                          | D<br>AB DE                                                      | $J^{\pi}$ : L(d,t)=2.<br>XREF: B(880)E(883).                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |

Continued on next page (footnotes at end of table)

# <sup>103</sup>Pd Levels (continued)

| E(level) <sup>†</sup>       | $J^{\pi \ddagger}$                      | T <sub>1/2</sub>               | XREF     | Comments                                                                                                                                                         |
|-----------------------------|-----------------------------------------|--------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                             |                                         |                                |          | $J^{\pi}$ : L(d,t),(d,p)=2; M1,E2 $\gamma$ decays to 3/2 <sup>+</sup> ,5/2 <sup>+</sup> states.                                                                  |
| 900.0 1                     | 9/2 <sup>+</sup>                        |                                | ACE      | $J^{\pi}$ : M1(+E2) $\gamma$ decay to 7/2 <sup>+</sup> , E2 $\gamma$ to 5/2 <sup>+</sup> .                                                                       |
| 904.12° 20                  | 11/21                                   |                                | СE       | J <sup>*</sup> : member of band built on $J^{*} = 1/2^{+}$ 243-keV state; E2 to this $1/2^{+}$ state.                                                            |
| 913.41 15                   | 3/2-,5/2-,7/2-                          |                                | BC       | XREF: $B(915)$ .                                                                                                                                                 |
| 1043.61 4                   | 3/2+,5/2+                               |                                | BCDE     | $3 \cdot E1 + (0.5/2)$ .<br>XREF: B(1044)E(1037).                                                                                                                |
|                             |                                         |                                |          | $J^{\pi}$ : L=2 (d,p),(d,t) levels at 1044 keV in (d,t) and 1037 keV in (d,p)                                                                                    |
| 1069.05 14                  | $(3/2^+, 5/2^+)$                        |                                | ACE      | probably are the same.<br>XREF: E(1067).                                                                                                                         |
| 1007100 11                  | (0/2 ,0/2 )                             |                                |          | L=2,(0) excitation at 1067 keV in $(d,t)(1973RiZL)$ ; however not                                                                                                |
|                             |                                         |                                |          | observed by 1980Sc23 in similar (d,t) experiments.                                                                                                               |
| 1155.36 10                  | $(3/2, 5/2)^+$                          |                                | AC       | $J^{*}$ : (M1,E2) to $5/2^{+}$ .<br>$I^{\pi}$ : M1(+E2) to $5/2^{+}$ gs.                                                                                         |
| 1182.92 5                   | $(5/2)^+$                               |                                | A C      | $J^{\pi}$ : $5/2^+$ , $7/2^+$ , $9/2^+$ from allowed $\varepsilon$ transition from $7/2^+$ <sup>103</sup> Ag                                                     |
|                             |                                         |                                |          | decay with log $ft=5.7$ ; $7/2^+$ , $9/2^+$ excluded if $J^{\pi}=1/2^+$ for $\overline{499}$ - and $727$ -keV states                                             |
| 1261.50 <sup>a</sup> 11     | 15/2-                                   |                                | Е        | $J^{\pi}$ : member of rotational band based on $J^{\pi}=11/2^{-}$ state at 784 keV;                                                                              |
| 1272 07 4                   | $(5/2)^+$                               | $52 f_{-} + 10 7$              |          | E2 to this $11/2^{-1}$ state.                                                                                                                                    |
| 1275.97 4                   | $(3/2)^{+}$                             | 52 18 +10-7                    | A CD     | $J^{\pi}$ : D+O $\gamma$ to 5/2 <sup>+</sup> , log <i>ft</i> =4.8 from 7/2 <sup>+</sup> parent. L(d,t)=2 to 1271                                                 |
|                             |                                         |                                |          | keV level may correspond. 1987Ja01 assign 7/2+, not compatible                                                                                                   |
|                             |                                         |                                |          | with $L=2$ .                                                                                                                                                     |
| 1277.0 5                    | 5/2+                                    | 45 fs +10-7                    | BC       | $T_{1/2}$ : from 1987Ja01 in (p,ny).<br>$T_{1/2}$ : from 1987Ja01 in (p,ny).                                                                                     |
|                             |                                         |                                |          | $J^{\pi}$ : M1+E2 $\gamma$ 's to $3/2^+$ and $5/2^+$ , $\gamma(\theta)$ rules out $3/2$ .                                                                        |
| 1280 15                     | $(11/2)^{-}$                            |                                | D        | $J^{n}$ : L(d,t)=5; 11/2 <sup>-</sup> suggested by 1980Sc23 on the basis of measured C <sup>2</sup> S.                                                           |
| 1308.9 4                    | (9/2)+                                  |                                | С        | $J^{\pi}$ : rel $\gamma$ excit favors 9/2,11/2; M1,E2 decay to 5/2 <sup>+</sup> state excludes 11/2; if J=9/2 decays to 5/2 <sup>+</sup> states M1 is ruled out. |
| 1328.94 <sup>&amp;</sup> 15 | 11/2+                                   |                                | CE       | $J^{\pi}$ : rel $\gamma$ excit suggest 9/2,11/2; M1,E2 to (9/2) <sup>+</sup> and E2 to 7/2 <sup>+</sup>                                                          |
| 1386.12 8                   | (5/2)                                   | 24 fs +7-4                     | AC       | $T_{1/2}$ : from 1987Ja01 in (p,n $\gamma$ ).                                                                                                                    |
|                             |                                         |                                |          | $J^{\pi}$ : D+Q $\gamma$ to 5/2 <sup>+</sup> , $\Delta J=0$ from A <sub>4</sub> .                                                                                |
| 1527.04# 7                  | $13/2^+$                                |                                | E        | $J^{\pi}$ : member of cascade built on g.s.; E2 to 9/2 <sup>+</sup> .                                                                                            |
| 1547.11 15                  | $(5/2^+, 7/2^+)$<br>$3/2^+, 5/2^+$      |                                | A C<br>D | $J^{*}$ : $D+Q \gamma$ to $S/2^{*}$ , $\gamma$ to $S/2^{*}$ .<br>$I^{\pi}$ : from L(d t)=2                                                                       |
| 1581.33 14                  | 5/2 <sup>+</sup> ,5/2                   | 42 fs +10-7                    | A CD     | XREF: D(1570).                                                                                                                                                   |
|                             |                                         |                                |          | $T_{1/2}$ : from 1987Ja01 in (p,n $\gamma$ ).                                                                                                                    |
| 1592 38 8                   | $(5/2^+ 7/2 9/2^+)$                     | $194 \text{ fs} \pm 62 \pm 42$ | AC       | J <sup>*</sup> : L(d,t)=2, D+Q $\gamma$ to 5/2 <sup>*</sup> and //2 <sup>*</sup> .                                                                               |
| 1572.50 0                   | (3/2 ,7/2,7/2 )                         | 1)+13+02 +2                    | пс       | $J^{\pi}$ : $\gamma$ 's to 5/2 <sup>+</sup> and 9/2 <sup>+</sup> .                                                                                               |
| 1595 2                      | 5/2                                     | 55 f 14 7                      | B D      | $M_{\rm e}$ D $(0,, t_{\rm e}, 5/2^{+},, 1/2/2^{+},, (0))$ miles suct 2/2                                                                                        |
| 1604.72.75                  | $\frac{5}{2}$ $\frac{1}{2^+}$           | 55 18 +14-7                    | A C<br>D | $J^{*}$ : $D+Q \gamma$ to $S/2^{*}$ and $S/2^{*}$ , $\gamma(\theta)$ rules out $S/2$ .<br>$I^{\pi}$ : $L(d t)=0$                                                 |
| 1676 2                      | 1/2                                     |                                | D        |                                                                                                                                                                  |
| 1679.0 4                    | (7/2)                                   | 14 fs +4-3                     | C        | $J^{\pi}$ : M1+E2 $\gamma$ to 7/2 <sup>+</sup> , $\Delta J=0$ from A <sub>4</sub> .                                                                              |
| 1689.93 24                  | $(3/2^+, 5/2, 1/2^+)$<br>$3/2^+, 5/2^+$ |                                | A<br>DE  | $J^{*}: \gamma \$ s to $(3/2)^{*}$ and $1/2^{*}$ .<br>$I^{\pi}: L(d,t)=2.$                                                                                       |
| 1775.65 14                  | $(5/2^+)$                               | 97 fs +17-10                   | A C      | $T_{1/2}$ : from 1987Ja01 in (p,n $\gamma$ ).<br>$I^{\alpha}$ . D+O $\gamma$ to $7/2^+$                                                                          |
| 1777.18 <sup>@</sup> 21     | 15/2+                                   |                                | E        | $J^{\pi}$ : member of rotational band built on 7/2 <sup>+</sup> state. E2 to 11/2 <sup>+</sup> state.                                                            |
| 1820 15                     | $1/2^{+}$                               |                                | л<br>D   | $J^{\pi}$ : L(d,t)=0.                                                                                                                                            |
| 1833 2                      | 3/2+,5/2+                               |                                | В        | $J^{\pi}: L(d,p)=2.$                                                                                                                                             |

Continued on next page (footnotes at end of table)

# <sup>103</sup>Pd Levels (continued)

| E(level) <sup>†</sup>          | Jπ‡                             | T <sub>1/2</sub>     | XREF       | Comments                                                                                                    |
|--------------------------------|---------------------------------|----------------------|------------|-------------------------------------------------------------------------------------------------------------|
| 1886 2                         |                                 |                      | В          |                                                                                                             |
| 1900 15                        | 1/2-,3/2-                       |                      | DE         | $J^{\pi}$ : L(d,t)=1.                                                                                       |
| 1953.5 <i>3</i>                | (5/2)                           | 48 fs +10-7          | ABCD       | XREF: B(1947)D(1960).                                                                                       |
|                                |                                 |                      |            | $J^{\pi}$ : D+Q $\gamma$ to 5/2 <sup>+</sup> , $\gamma(\theta)$ restricts J to 5/2.                         |
| 1964.32 14                     | 7/2                             | 73 fs +17–14         | A CD       | $J^{\pi}$ : D+Q $\gamma$ to 5/2 <sup>+</sup> , $\gamma(\theta)$ restricts J to 7/2 but L=2 in (d,t).        |
| 1974.91 <sup>a</sup> 16        | 19/2-                           |                      | E          | $J^{n}$ : member of rotational band based on $J^{n}=11/2^{-1}$ state at 784 keV;                            |
| 2100 15                        | 1/2- 2/2-                       |                      | D          | E2 to $15/2$ state.                                                                                         |
| 2100 15                        | 1/2 ,5/2                        |                      |            | $J^{**}$ L(d,t)=1.                                                                                          |
| 2178                           | 15/2+                           |                      | E          | $J^{\pi}$ : 849 $\gamma$ to 11/2 <sup>+</sup> state. Band member.                                           |
| 2180 15                        | 1/2 ,3/2 (5/2 <sup>+</sup> )    | $21 f_{-} + 5 f_{-}$ | DE         | $J^{*}: L(d,t)=1.$                                                                                          |
| 2233.0 3                       | $(3/2^{+})$<br>$7/2^{+}0/2^{+}$ | 21 18 +3-4           |            | $J^{(1)}$ D+Q $\gamma$ to 5/2° and 7/2°, $\gamma(\theta)$ restricts J to 5/2.                               |
| 2213.42 24                     | 1/2 ,9/2                        |                      | A CD       | $I^{\pi}$ : I (d t)=4. In disagreement with $I^{\pi}=5/2^+$ from (n ny)                                     |
| 2343.13.24                     | 5/2+.7/2+.9/2+                  |                      | Α          | $J^{\pi}$ : log $ft=5.5$ from $7/2^+$ .                                                                     |
| 2408.30 20                     | $5/2^+, 7/2^+, 9/2^+$           |                      | A          | $J^{\pi}$ : log $ft=5.3$ from $7/2^+$ .                                                                     |
| 2417.6 4                       | 5/2+,7/2+,9/2+                  |                      | A          | $J^{\pi}$ : log ft=5.8 from $7/2^+$ .                                                                       |
| 2446.5 4                       | 5/2+,7/2+,9/2+                  |                      | Α          | $J^{\pi}$ : log ft=5.5 from 7/2 <sup>+</sup> .                                                              |
| 2464.7 10                      | 5/2+,7/2+,9/2+                  |                      | Α          | $J^{\pi}$ : log ft=5.9 from 7/2 <sup>+</sup> .                                                              |
| 2468 <sup>#</sup>              | 17/2+                           |                      | Е          |                                                                                                             |
| 2486.5 8                       | 7/2+,9/2+                       |                      | A D        | XREF: D(2480).                                                                                              |
|                                |                                 |                      |            | J <sup><math>\pi</math></sup> : probably identical with L(d,t)=4 excitation at 2480 keV. If so,             |
|                                |                                 |                      |            | consistent with log $ft=5.9$ in <sup>103</sup> Ag $\varepsilon$ decay from 7/2 <sup>+</sup> .               |
| 2511.5 8                       | 5/2+,7/2+,9/2+                  |                      | Α          | $J^{\pi}$ : log ft=5.5 from 7/2 <sup>+</sup> .                                                              |
| 2600 15                        | $7/2^+, 9/2^+$                  |                      | DE         | $J^{n}: L(d,t)=4.$                                                                                          |
| 2601                           | $(15/2^{+})$                    |                      | E          |                                                                                                             |
| 2000 15                        | $1/2^{-}, 9/2^{-}$              |                      | ע          | $J^{*}: L(0,t) = 4.$                                                                                        |
| 2700 15                        | 1/2, $3/2$                      |                      | ע<br>ד     | J. $L(u,t) = 1$ .                                                                                           |
| 2764.38 23                     | 19/21                           |                      | E          | J <sup>*</sup> : member of rotational band built on 243-keV $J^{*} = 1/2^{+}$ state. E2 to $15/2^{+}$ state |
| 2822.01 <sup><i>a</i></sup> 19 | 23/2-                           |                      | Е          | $J^{\pi}$ : member of rotational band based on $J^{\pi}=11/2^{-1}$ state at 784 keV:                        |
|                                |                                 |                      | _          | E2 to $19/2^-$ state.                                                                                       |
| 2834 <mark>b</mark>            | $(17/2)^+$                      |                      | F          | $I^{\pi}$ : M1's to 15/2 <sup>+</sup> and probable hand member $I^{\pi}$ =15/2 <sup>+</sup> not excluded    |
| 2880 15                        | $1/2^{-}.3/2^{-}$               |                      | D          | $J^{\pi}$ : L(d,t)=1.                                                                                       |
| 2924                           | 1 )-1                           |                      | Е          |                                                                                                             |
| 3020.38 17                     | $(21/2)^+$                      |                      | Е          | $J^{\pi}$ : M1+E2 to 19/2 <sup>+</sup> . (21/2) <sup>+</sup> and (23/2) <sup>+</sup> cannot be excluded.    |
| 3071 <sup>c</sup>              | $(19/2^+)$                      |                      | E          |                                                                                                             |
| 3382 <sup>b</sup>              | $(21/2)^+$                      |                      | E          |                                                                                                             |
| 3714 <sup>c</sup>              | $(23/2^+)$                      |                      | E          |                                                                                                             |
| 3792.10 <sup><i>a</i></sup> 19 | $27/2^{-}$                      |                      | E          | $J^{\pi}$ : member of rotational band based on $J^{\pi}=11/2^{-}$ state at 784 keV;                         |
| 4056                           | 25/2+                           |                      | F          | E2 to $23/2$ state.                                                                                         |
| 41cob                          | $(25/2)^+$                      |                      | - E<br>- E |                                                                                                             |
| 4100°<br>4587°                 | $(23/2)^{+}$                    |                      | E          |                                                                                                             |
| 4307                           | (27/2)<br>31/2 <sup>-</sup>     |                      | E          | $I^{\pi}$ ; member of rotational hand based on $I^{\pi} - 11/2^{-}$ state at 784 keV;                       |
| +000.4 5                       | 51/2                            |                      | L          | consistent with $1094\gamma(\theta)$ .                                                                      |
| 5025 <sup>b</sup>              | $(29/2)^+$                      |                      | E          |                                                                                                             |
| 5458 <sup>c</sup>              | $(31/2^+)$                      |                      | Ē          |                                                                                                             |
| 5983 <sup>b</sup>              | $(33/2)^+$                      |                      | <br>7      |                                                                                                             |
| 6048.3 <sup><i>a</i></sup> 4   | 35/2-                           |                      | E          |                                                                                                             |
| 6452 <sup>c</sup>              | $(35/2^+)$                      |                      | Ē          |                                                                                                             |
| 7056 <sup>b</sup>              | $(37/2)^+$                      |                      | F          |                                                                                                             |
| 7316 <sup>a</sup>              | 39/2-                           |                      | E          |                                                                                                             |
|                                |                                 |                      | -          |                                                                                                             |

#### <sup>103</sup>Pd Levels (continued)

| E(level) <sup>†</sup> | Jπ‡        | XREF | Comments                                                                                                                                                                                                  |
|-----------------------|------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7593 <sup>C</sup>     | $(39/2^+)$ | E    |                                                                                                                                                                                                           |
| 8212 <sup>b</sup>     | $(41/2)^+$ | Е    |                                                                                                                                                                                                           |
| 8668 <mark>4</mark>   | 43/2-      | Е    |                                                                                                                                                                                                           |
| 8831 <sup>C</sup>     | $(43/2^+)$ | E    |                                                                                                                                                                                                           |
| 9442 <sup>b</sup>     | $(45/2)^+$ | Е    |                                                                                                                                                                                                           |
| 10119 <sup>a</sup>    | $47/2^{-}$ | E    |                                                                                                                                                                                                           |
| 10190 <sup>C</sup>    | $(47/2^+)$ | E    |                                                                                                                                                                                                           |
| 10741 <sup>6</sup>    | $(49/2)^+$ | E    |                                                                                                                                                                                                           |
| 11638 <sup>a</sup>    | $51/2^{-}$ | E    |                                                                                                                                                                                                           |
| 11643 <sup>c</sup>    | $(51/2^+)$ | E    |                                                                                                                                                                                                           |
| 12208 <sup>b</sup>    | $(53/2)^+$ | E    |                                                                                                                                                                                                           |
| 13240 <sup>C</sup>    | $(55/2^+)$ | E    |                                                                                                                                                                                                           |
| 13798 <mark>6</mark>  | $(57/2)^+$ | Е    |                                                                                                                                                                                                           |
| 14932 <sup>c</sup>    | $(59/2^+)$ | E    |                                                                                                                                                                                                           |
| 15487 <mark>b</mark>  | $(61/2)^+$ | Е    |                                                                                                                                                                                                           |
| 17357 <mark>b</mark>  | $(65/2)^+$ | Е    | E(level): band terminating state (1999Ny01).                                                                                                                                                              |
| 0+x                   |            | E    |                                                                                                                                                                                                           |
| 453+x <sup>d</sup>    | (53/2)     | E    | $J^{\pi}$ : for a detailed discussion on $J^{\pi}$ assignments for the different band members see 1999Ny01. No convincing evidence given by 1993Je02 and 1999Ny01 that this band is a superdeformed band. |
| 1912+x <sup>d</sup>   | (57/2)     | Е    |                                                                                                                                                                                                           |
| 2045+x                |            | Е    |                                                                                                                                                                                                           |
| 3439+x <sup>d</sup>   | (61/2)     | Е    |                                                                                                                                                                                                           |
| $5003 + x^{d}$        | (65/2)     | Е    |                                                                                                                                                                                                           |
| 6662+x <sup>d</sup>   | (69/2)     | Е    |                                                                                                                                                                                                           |
| 8449+x <sup>d</sup>   | (73/2)     | Е    |                                                                                                                                                                                                           |
| 10359+x <b>d</b>      | (77/2)     | Е    |                                                                                                                                                                                                           |
| 12377+x <sup>d</sup>  | (81/2)     | Е    |                                                                                                                                                                                                           |
| 14636+x <sup>d</sup>  | (85/2)     | Е    | E(level): band terminating state (1999Ny01).                                                                                                                                                              |

<sup>†</sup> Calculated using a least-squares procedure using adopted gammas.

<sup>‡</sup> Unless noted otherwise,  $J^{\pi}$  assignments based on A<sub>22</sub>, A<sub>44</sub>,  $\gamma$  linear pol and proposed band structure in (HI,xn $\gamma$ ).

- <sup>#</sup> Band(A):  $\Delta J=2$  band on 5/2<sup>+</sup> g.s. (1999Ny01).
- <sup>@</sup> Band(B):  $\Delta J=2$  band on 243 keV, 7/2<sup>+</sup> level (1999Ny01).
- <sup>&</sup> Band(C):  $\Delta J=2$  band on 531 keV, 7/2<sup>+</sup> level (1999Ny01).
- <sup>*a*</sup> Band(D):  $\Delta J=2$  band on 785 keV,  $11/2^{-1}$  level (1999Ny01).
- <sup>b</sup> Band(E):  $\Delta J=2$  band on 2834 keV,  $17/2^+$  level (1999Ny01).
- <sup>*c*</sup> Band(F):  $\Delta J=2$  band on 2601 keV,  $15/2^+$  level (1999Ny01).

<sup>*d*</sup> Band(G):  $\Delta J=2$  band on (53/2) level (1999Ny01). The evaluator does not find any convincing evidence in the 1993Je02 and 1999Ny01 papers for this band is a superdeformed band.

## $\gamma(^{103}\text{Pd})$

| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | ${\rm E_{\gamma}}^{\#}$ | $I_{\gamma}^{\#}$ | $E_f$                  | $\mathbf{J}_f^{\pi}$  | Mult. <sup>†</sup> | $\delta^{\ddagger}$ | α <sup>@</sup> | Comments                                                                                                        |
|------------------------|----------------------|-------------------------|-------------------|------------------------|-----------------------|--------------------|---------------------|----------------|-----------------------------------------------------------------------------------------------------------------|
| 118,736                | $3/2^{+}$            | 118.72.2                | 100               | 0.0                    | $5/2^{+}$             | M1+E2              | +0.090.15           | 0.239.4        | B(M1)(W.u.)=0.015 8: B(E2)(W.u.)=11.5 5                                                                         |
| 243.959                | $7/2^+$              | 125.16 4                | 2.0.2             | 118.736                | $3/2^+$               |                    | 101090 10           | 0.209          |                                                                                                                 |
|                        |                      | 243.95 4                | 100 5             | 0.0                    | 5/2+                  | M1+E2              | -0.085 15           | 0.0339 5       | δ: from 1975Ki13 via 244γ linear pol. Other: $-0.105$<br>(1974Gr07) via $\gamma(\theta)$ , $-0.124$ (1987Ja01). |
| 266.861                | $5/2^{+}$            | 148.19 2                | 100.0 18          | 118.736                | $3/2^{+}$             | M1                 |                     | 0.1275 18      | $\delta = 0.005$ from $148\gamma(\theta)$ .                                                                     |
|                        | ,                    | 266.83 4                | 52 2              | 0.0                    | $5/2^{+}$             | M1+E2              | -0.14 6             | 0.0272 15      |                                                                                                                 |
| 498.948                | $(1/2^+)$            | 380.15 2                | 100 4             | 118.736                | $3/2^{+}$             | (M1)               |                     | 0.01090 16     |                                                                                                                 |
|                        |                      | 499.08 <i>3</i>         | 11 <i>I</i>       | 0.0                    | $5/2^{+}$             |                    |                     |                |                                                                                                                 |
| 504.24                 | $(3/2)^+$            | 237.3 2                 | 13.4 8            | 266.861                | $5/2^{+}$             | M1                 |                     | 0.0362 6       | $\alpha$ (K)exp=0.027 7                                                                                         |
|                        |                      | 385.6 1                 | 100 5             | 118.736                | $3/2^{+}$             | M1,E2              |                     |                | $\alpha(K) \exp = 0.01 l$                                                                                       |
|                        |                      | 504.2 <i>1</i>          | 35.9 15           | 0.0                    | $5/2^{+}$             | M1(+E2)            | 0.03 3              |                | $\alpha(K) \exp = 0.0057 7$                                                                                     |
| 531.972                | 7/2+                 | 265.21 3                | 11 3              | 266.861                | $5/2^{+}$             | M1                 |                     | 0.0274         | $\delta = 0.00 \ 10 \ \text{from } 265\gamma(\theta) \ (1974\text{Gr07}).$                                      |
|                        |                      | 288.05 5                | 71                | 243.959                | $7/2^{+}$             | M1+E2              | -0.17 10            | 0.0223 6       | $\delta$ : from 1974Gr07.                                                                                       |
|                        |                      | 531.86 5                | 100 10            | 0.0                    | 5/2+                  | M1+E2              | -0.7 2              |                | δ: from 532γ linear pol (1975Ki13). Other: $-0.7 3 \gamma(\theta)$ (1974Gr07), $-0.65 20$ (1987Ja01).           |
| 625.637                | 3/2+,5/2+            | 358.75 4                | 5 1               | 266.861                | $5/2^{+}$             |                    |                     |                |                                                                                                                 |
|                        |                      | 625.65 <i>3</i>         | 100 6             | 0.0                    | 5/2+                  | M1,E2              |                     |                | $\alpha$ (K)exp=0.0031 <i>3</i><br>$\alpha$ (K)(M1)=0.0029; $\alpha$ (K)(E2)=0.0028.                            |
| 698.746                | $5/2^{+}$            | 166.95 6                | 4 1               | 531.972                | $7/2^{+}$             |                    |                     |                |                                                                                                                 |
|                        |                      | 431.86 <i>3</i>         | 14 <i>1</i>       | 266.861                | $5/2^{+}$             | M1,E2              |                     |                | $\alpha$ (K)exp=0.077 18                                                                                        |
|                        |                      |                         |                   |                        |                       |                    |                     |                | $\alpha(K)(M1)=0.0070; \ \alpha(K)(E2)=0.0080.$                                                                 |
|                        |                      | 455.4 6                 | $\approx 7$       | 243.959                | $7/2^{+}$             |                    |                     |                |                                                                                                                 |
|                        |                      | 580.13 4                | 100 4             | 118.736                | $3/2^{+}$             | M1(+E2)            |                     |                | $\alpha$ (K)exp=0.0037 9                                                                                        |
|                        |                      |                         |                   |                        |                       |                    |                     |                | $\delta$ : +0.07 7 or +2.6 +5-3.                                                                                |
|                        |                      | 698.68 4                | 20 2              | 0.0                    | $5/2^{+}$             | D(+Q)              |                     |                | $\delta: -0.5 < \delta < +4.8.$                                                                                 |
| 718.02                 | 9/2+                 | 186.15 10               | 15 2              | 531.972                | $7/2^{+}$             | M1+E2              | -0.12 6             | 0.0700 18      | $\alpha$ (K)exp=0.058 11                                                                                        |
|                        |                      |                         |                   |                        |                       |                    |                     |                | $\delta$ : from 1974Gr07 in (HI,xn $\gamma$ ).                                                                  |
|                        |                      | 451.1 <i>1</i>          | 71                | 266.861                | $5/2^{+}$             | E2                 |                     |                | $\alpha(K) \exp = 0.0075 \ 14$                                                                                  |
|                        |                      | 473.9 <i>1</i>          | 13.1 8            | 243.959                | 7/2+                  | M1+E2              |                     |                | $\alpha$ (K)exp=0.0074 <i>13</i>                                                                                |
|                        |                      |                         |                   |                        |                       |                    |                     |                | $\delta$ : -1.4 2 or -0.50 20 (1974Gr07).                                                                       |
|                        |                      | 717.6 3                 | 100 3             | 0.0                    | 5/2+                  | E2                 |                     |                |                                                                                                                 |
| 727.31                 | $1/2^{+}$            | 608.60 14               | 100 14            | 118.736                | $3/2^{+}$             | M1,E2              |                     |                | $\alpha$ (K)exp=0.0033 9                                                                                        |
|                        |                      |                         |                   |                        | <b>T</b> ( <b>D</b> ) |                    |                     |                | $\alpha(K)(M1)=0.0031; \ \alpha(K)(E2)=0.00299.$                                                                |
| 504 50                 | 11/2-                | 727.4 2                 | 21.5              | 0.0                    | 5/2+                  |                    |                     | 0.400.0        | (1) 0.07                                                                                                        |
| 784.79                 | $11/2^{-}$           | 66.95 15                | 100 12            | 718.02                 | 9/2+                  | (E1)               |                     | 0.480 8        | $\alpha$ (L)exp<0.07                                                                                            |
|                        |                      |                         |                   |                        |                       |                    |                     |                | $B(E1)(W.u.)=2.4\times10^{-5} 5$                                                                                |
|                        |                      | 541.0 <i>1</i>          | 27 5              | 243.959                | $7/2^{+}$             | M2                 |                     | 0.01450 21     | B(M2)(W.u.)=0.163                                                                                               |
|                        |                      |                         |                   |                        |                       |                    |                     |                | $\alpha$ (K)exp=0.0135 40                                                                                       |
|                        |                      |                         |                   |                        |                       |                    |                     |                | Mult.: from 541 $\gamma$ linear pol (1975Ki13) and                                                              |
| 001                    |                      | 104155                  |                   | <pre>coc = · · ·</pre> | - (a                  |                    |                     | 0.0465.55      | $\alpha$ (K)exp=0.0135 (1975Di09) (p,n $\gamma$ ).                                                              |
| 884.67                 | $3/2^+, 5/2^+$       | 186.15 8                | 10.0 8            | 698.746                | 5/2+                  | M1                 |                     | 0.0688 10      |                                                                                                                 |
|                        |                      | 380.5 <i>3</i>          | 32 2              | 504.24                 | $(3/2)^+$             |                    |                     |                |                                                                                                                 |

S

|                        |                                                      |                                                                                               |                                                                                                                                |                                                                                   | Adopted                                                                                                                                 | l Levels, Gam                  | <mark>mas</mark> (cont | inued)         |                                                                                                                                      |
|------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------|
|                        |                                                      |                                                                                               |                                                                                                                                |                                                                                   |                                                                                                                                         | $\gamma(^{103}\text{Pd})$ (con | tinued)                |                |                                                                                                                                      |
| E <sub>i</sub> (level) | $\mathrm{J}_i^\pi$                                   | ${\rm E_{\gamma}}^{\#}$                                                                       | $I_{\gamma}^{\#}$                                                                                                              | $E_f$                                                                             | $\mathbf{J}_f^{\pi}$                                                                                                                    | Mult. <sup>†</sup>             | $\delta^{\ddagger}$    | α <sup>@</sup> | Comments                                                                                                                             |
| 884.67                 | 3/2+,5/2+                                            | 766.2 2                                                                                       | 54 6                                                                                                                           | 118.736                                                                           | 3/2+                                                                                                                                    | (M1+E2)                        |                        |                | $\alpha(K) \exp = 0.0024 \ 6$                                                                                                        |
|                        |                                                      | 884.7 <i>3</i>                                                                                | 100 5                                                                                                                          | 0.0                                                                               | 5/2+                                                                                                                                    | E2(+M1)                        |                        |                | $\delta$ : -0.22 8 or -3.6 3.<br>$\alpha$ (K)exp=0.0012 2<br>$\delta$ : -0.56 17 or $\infty$ .                                       |
| 900.0                  | 9/2+                                                 | 201.3 2<br>368.0 3<br>633.35 15<br>656.2 2<br>899 9 2                                         | 9.1 7<br>0.8 2<br>30 4<br>24 4<br>100 14                                                                                       | 698.746<br>531.972<br>266.861<br>243.959                                          | 5/2 <sup>+</sup><br>7/2 <sup>+</sup><br>5/2 <sup>+</sup><br>7/2 <sup>+</sup><br>5/2 <sup>+</sup>                                        | (M1)<br>E2<br>M1+E2<br>F2      | -1.8 2                 | 0.0118 17      | $\alpha$ (K)exp=0.016 4<br>$\alpha$ (K)exp=0.0036 9<br>$\alpha$ (K)exp $\approx$ 0.002<br>$\alpha$ (K)exp=0.0014 3                   |
| 904.12                 | 11/2+                                                | 186.0 10                                                                                      | 7 7                                                                                                                            | 718.02                                                                            | 9/2+<br>7/2+                                                                                                                            | L2                             |                        |                |                                                                                                                                      |
| 913.41                 | 3/2 <sup>-</sup> ,5/2 <sup>-</sup> ,7/2 <sup>-</sup> | 660.13 5<br>646.7 3<br>669.6 3                                                                | 100 <i>15</i><br>48 <i>3</i><br>30 <i>3</i>                                                                                    | 243.959<br>266.861<br>243.959                                                     | 7/2+<br>5/2+<br>7/2+                                                                                                                    | E2<br>E1<br>(E1)               |                        |                | $\alpha$ (K)exp=0.0029 5<br>$\alpha$ (K)exp=0.011 3<br>$\alpha$ (K)exp $\approx$ 0.0017                                              |
| 1043.61                | 3/2+,5/2+                                            | 913.5 <i>3</i><br>776.7 <i>1</i><br>799.6 <i>1</i>                                            | 100 7<br>14 <i>1</i><br>29 <i>3</i>                                                                                            | 0.0<br>266.861<br>243.959                                                         | 5/2+<br>5/2+<br>7/2+                                                                                                                    | El                             |                        |                | $\alpha$ (K)exp=0.00055 <i>10</i>                                                                                                    |
| 1069.05                | (3/2 <sup>+</sup> ,5/2 <sup>+</sup> )                | 1043.62 <i>4</i><br>802.16 <i>18</i>                                                          | 100 <i>4</i><br>100 <i>10</i>                                                                                                  | 0.0<br>266.861                                                                    | 5/2+<br>5/2+                                                                                                                            | M1+E2<br>(M1,E2)               |                        |                | δ: -0.16 9  or  +3.8 9.<br>α(K)exp=0.0015<br>α(K)(M1)=0.0016; α(K)(E2)=0.0016.                                                       |
| 1155.36                | (3/2,5/2)+                                           | 950.3 <i>4</i><br>888.53 <i>8</i>                                                             | 13.2 9<br>62 5                                                                                                                 | 118.736<br>266.861                                                                | 3/2 <sup>+</sup><br>5/2 <sup>+</sup>                                                                                                    | M1,E2                          |                        |                | $\alpha$ (K)exp=0.00094 35<br>$\alpha$ (K)(M1)=0.0013; $\alpha$ (K)(E2)=0.00115.                                                     |
|                        |                                                      | 911.7 <sup>&amp;</sup> 2<br>1155.4 4                                                          | 80 <i>20</i><br>100 <i>10</i>                                                                                                  | 243.959<br>0.0                                                                    | 7/2 <sup>+</sup><br>5/2 <sup>+</sup>                                                                                                    | M1+E2                          | -1.5 3                 |                | $\alpha(K)\exp\approx 0.0006$<br>$\delta$ : From <sup>103</sup> Rh(p,n $\gamma$ ).<br>$\alpha(K)(M1)=0.00084; \alpha(K)(F2)=0.00074$ |
| 1182.92                | (5/2)+                                               | 298.43 6<br>456.0 8<br>484.10 20<br>651.0 6<br>678.8 4<br>683.80 20<br>938.86 5<br>1064.08 10 | $\begin{array}{c} 10.1 \ 6 \\ \approx 3 \\ 12.8 \ 17 \\ 7.3 \ 17 \\ 3.4 \ 6 \\ 5.6 \ 17 \\ 41.3 \ 22 \\ 46.9 \ 17 \end{array}$ | 884.67<br>727.31<br>698.746<br>531.972<br>504.24<br>498.948<br>243.959<br>118.736 | $3/2^+, 5/2^+$<br>$1/2^+$<br>$5/2^+$<br>$7/2^+$<br>$(3/2)^+$<br>$(1/2^+)$<br>$7/2^+$<br>$3/2^+$                                         | D+Q                            | +1.6 9                 |                | u(R)(N11)=0.00004, u(R)(L2)=0.00074.                                                                                                 |
| 1261.50<br>1273.97     | 15/2 <sup>-</sup><br>(5/2) <sup>+</sup>              | 1182.72 6<br>476.70 5<br>389.20 30<br>546.7 4<br>575.33 10<br>742.11 8                        | 100 5<br>100<br>1.09 27<br>0.45 9<br>8.1 4<br>27.2 7                                                                           | 0.0<br>784.79<br>884.67<br>727.31<br>698.746<br>531.972                           | 5/2 <sup>+</sup><br>11/2 <sup>-</sup><br>3/2 <sup>+</sup> ,5/2 <sup>+</sup><br>1/2 <sup>+</sup><br>5/2 <sup>+</sup><br>7/2 <sup>+</sup> | D+Q<br>E2                      |                        |                | $\alpha$ (K)exp $\approx$ 0.0005<br>$\delta$ : -0.20 7 or +2.2 7.<br>$\alpha$ (K)exp=0.0068 15                                       |
|                        |                                                      | 775.0 <i>6</i><br>1007.08 <i>8</i>                                                            | 0.82 <i>27</i><br>34.6 <i>11</i>                                                                                               | 498.948<br>266.861                                                                | $(1/2^+)$<br>$5/2^+$                                                                                                                    |                                |                        |                |                                                                                                                                      |

From ENSDF

 $^{103}_{46}{\rm Pd}_{57}$ -6

L

## $\gamma(^{103}\text{Pd})$ (continued)

| E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$                        | $E_{\gamma}^{\#}$                                           | $I_{\gamma}^{\#}$                                   | $E_f$                                   | ${ m J}_f^\pi$                                             | Mult. <sup>†</sup> | $\delta^{\ddagger}$ | Comments                                                                                                                                                                                                   |
|------------------------|-------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------|------------------------------------------------------------|--------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1273.97                | (5/2)+                                    | 1029.97 8<br>1155.27 <i>10</i>                              | 13.9 5<br>32.6 7                                    | 243.959<br>118.736                      | 7/2 <sup>+</sup><br>3/2 <sup>+</sup>                       |                    |                     |                                                                                                                                                                                                            |
| 1277.0                 | 5/2+                                      | 1273.83 8<br>1158.2 5                                       | 100 <i>4</i><br>100 <i>11</i>                       | 0.0<br>118.736                          | 5/2 <sup>+</sup><br>3/2 <sup>+</sup>                       | (M1+E2)<br>M1+E2   | -0.25 5             | B(M1)(W.u.)=0.088 18; B(E2)(W.u.)=3.0 13<br>$\alpha$ (K)exp=0.00060 16<br>$\delta$ : +0.29 2 or +1.5 4.<br>$\alpha$ (K)(M1)=0.00072; $\alpha$ (K)(E2)=0.00064                                              |
| 1308.9                 | (9/2)+                                    | 1277.1 <i>10</i><br>610.8 6                                 | 43 <i>4</i><br>92 22                                | 0.0<br>698.746                          | 5/2 <sup>+</sup><br>5/2 <sup>+</sup>                       | (M1+E2)<br>M1,E2   | +0.5 1              | B(M1)(W.u.)=0.05072 <i>1</i> ; B(E2)(W.u.)=8 <i>4</i><br>$\alpha(K)(xp)=0.0023 7$<br>Mult.: M1 excluded if $J^{\pi}$ initial and final levels are correct.<br>$\alpha(K)(M1)=0.0030; \alpha(K)(E2)=0.0030$ |
|                        |                                           | 776.0 10                                                    | 76 14                                               | 531.972                                 | $7/2^{+}$                                                  |                    |                     | $u(\mathbf{R})(\mathbf{M}) = 0.0050, u(\mathbf{R})(\mathbf{E}) = 0.0050.$                                                                                                                                  |
|                        |                                           | 1064.6 6                                                    | 100 16                                              | 243.959                                 | 7/2+                                                       | M1,E2              |                     | $\alpha$ (K)exp=0.00087 24<br>$\alpha$ (K)(M1)=0.00087; $\alpha$ (K)(E2)=0.00076.                                                                                                                          |
| 1328.94                | 11/2+                                     | 429.1 3                                                     | 64 13                                               | 900.0                                   | 9/2+                                                       | M1,E2              |                     | $\alpha$ (K)exp=0.008 2<br>$\alpha$ (K)(M1)=0.0071; $\alpha$ (K)(E2)=0.0082.                                                                                                                               |
|                        |                                           | 611.40 <i>30</i><br>797.40 <i>27</i>                        | 50<br>100 <i>13</i>                                 | 718.02<br>531.972                       | 9/2 <sup>+</sup><br>7/2 <sup>+</sup>                       | E2                 |                     | $\alpha(K)\exp\approx 0.002$<br>Mult.: from (HI.xn $\gamma$ ).                                                                                                                                             |
| 1386.12                | (5/2)                                     | 1119.6 <i>3</i><br>1142.2 <i>2</i>                          | 25 <i>4</i><br>30.6 <i>17</i>                       | 266.861<br>243.959                      | 5/2+<br>7/2+                                               |                    |                     |                                                                                                                                                                                                            |
|                        |                                           | 1267.9 6                                                    | 33 8                                                | 118.736                                 | 3/2+                                                       |                    |                     | $I_{\gamma}$ : taken from <sup>103</sup> Ag $\varepsilon$ decay. In disagreement with $I_{\gamma}$ =97 <i>10</i> from <sup>103</sup> Rh(p,n $\gamma$ ).                                                    |
| 1527.04                | 13/2+                                     | 1386.07 8<br>198.00 <i>30</i><br>623                        | 100 5<br>25 5                                       | 0.0<br>1328.94<br>904.12                | 5/2 <sup>+</sup><br>11/2 <sup>+</sup><br>11/2 <sup>+</sup> | D+Q                | +1.23 20            |                                                                                                                                                                                                            |
| 1547.11                | (5/2+,7/2+)                               | 809.33 5<br>828.9 6                                         | 100 <i>14</i><br>33 8                               | 718.02<br>718.02                        | $9/2^+$<br>$9/2^+$<br>$(2/2)^+$                            | E2                 |                     | $E_{\gamma}$ : if uncertainty is correct no final level within 0.22 keV.                                                                                                                                   |
|                        |                                           | 1042.89 16<br>1280.34 19<br>1303.14 17<br>1428.28 18        | 62 5<br>100 <i>12</i><br>33 <i>3</i><br>25 <i>4</i> | 504.24<br>266.861<br>243.959<br>118.736 | $(3/2)^{+}$<br>$5/2^{+}$<br>$7/2^{+}$<br>$3/2^{+}$         |                    |                     |                                                                                                                                                                                                            |
|                        |                                           | 1547.1 2                                                    | 84 6                                                | 0.0                                     | $5/2^+$                                                    | D+Q                | -0.10 3             |                                                                                                                                                                                                            |
| 1581.33                | 5/2+                                      | 1337.4 2<br>1581.3 2                                        | 100 8<br>52 5                                       | 243.959<br>0.0                          | 7/2 <sup>+</sup><br>5/2 <sup>+</sup>                       | D+Q<br>D+O         | +0.98 25<br>+0.8 5  |                                                                                                                                                                                                            |
| 1592.38                | (5/2 <sup>+</sup> ,7/2,9/2 <sup>+</sup> ) | 874.29 <i>10</i><br>1325.52 <i>10</i><br>1592.4 <i>3</i>    | 69 6<br>100 4<br>17.1 <i>17</i>                     | 718.02<br>266.861<br>0.0                | 9/2 <sup>+</sup><br>5/2 <sup>+</sup><br>5/2 <sup>+</sup>   |                    |                     |                                                                                                                                                                                                            |
| 1604.72                | 5/2                                       | 1072.77 <i>17</i><br>1486.10 <i>14</i><br>1604.70 <i>16</i> | 68 8<br>52 4<br>100 67                              | 531.972<br>118.736<br>0.0               | 7/2 <sup>+</sup><br>3/2 <sup>+</sup><br>5/2 <sup>+</sup>   | D(+Q)<br>D(+Q)     |                     | $\delta$ : +0.03 10 or +2.8 10.<br>$\delta$ : 0.00 4 or 1.7 2.                                                                                                                                             |
| 1679.0                 | (7/2)                                     | 961.5 5<br>1147 5 5                                         | 28 <i>3</i>                                         | 718.02                                  | $9/2^+$<br>$7/2^+$                                         | $D \pm 0$          | -153                |                                                                                                                                                                                                            |
| 1689.93                | $(3/2^+, 5/2, 7/2^+)$                     | 1158.2 8                                                    | 59 20                                               | 531.972                                 | $7/2^+$                                                    | y⊤u                | 1.5 5               |                                                                                                                                                                                                            |

-

## $\gamma(^{103}\text{Pd})$ (continued)

| $E_i$ (level)                      | $\mathbf{J}_i^\pi$                                                                                                                                                      | $E_{\gamma}^{\#}$                                                        | $I_{\gamma}^{\#}$                                                         | $E_f$                                          | $\mathbf{J}_f^{\pi}$                                                                             | Mult. <sup>†</sup> | $\delta^{\ddagger}$ | Comments                                                                 |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------|---------------------|--------------------------------------------------------------------------|
| 1689.93                            | (3/2+,5/2,7/2+)                                                                                                                                                         | 1185.0 8<br>1423.2 4<br>1445.9 4<br>1690.0 6                             | 79 39<br>100 13<br>66 13<br>67 7                                          | 504.24<br>266.861<br>243.959<br>0.0            | $(3/2)^+$<br>$5/2^+$<br>$7/2^+$<br>$5/2^+$                                                       |                    |                     |                                                                          |
| 1775.65                            | (5/2 <sup>+</sup> )                                                                                                                                                     | 1076.8 2<br>1272.4 2<br>1775 7 2                                         | 10 2<br>100 <i>30</i><br>54 3                                             | 698.746 5<br>504.24 (                          | $(3/2)^+$<br>$(3/2)^+$<br>$(5/2^+)^+$                                                            | D±O                | -162                | No final level within 0.74 keV.                                          |
| 1777.18<br>1781.2                  | 15/2+                                                                                                                                                                   | 873.05 <i>5</i><br>1514.4 <i>8</i><br>1537.0 <i>10</i>                   | 100<br>50 9<br>100 43                                                     | 904.12<br>266.861 5<br>243.959                 | 5/2 <sup>+</sup><br>5/2 <sup>+</sup><br>7/2 <sup>+</sup>                                         | E2                 | -1.0 2              |                                                                          |
| 1953.5<br>1964.32                  | (5/2)<br>7/2                                                                                                                                                            | 1953.5 <i>3</i><br>1079.5 <i>2</i>                                       | 100 <i>I</i> 0<br>100<br>71 7                                             | 0.0 5                                          | $5/2^+$<br>$3/2^+$ $5/2^+$                                                                       | D+Q                | +4.7 12             | $\delta$ : From <sup>103</sup> Rh(p,n $\gamma$ ).                        |
| 170.102                            | .,_                                                                                                                                                                     | 1845.7 2<br>1964.4 5                                                     | 100 7<br>51 3                                                             | 118.736<br>0.0                                 | 3/2 <sup>+</sup><br>5/2 <sup>+</sup>                                                             | (E2)<br>D+O        | +0.21 5             | B(E2)(W.u.)=0.020 15                                                     |
| 1974.91<br>2178                    | 19/2 <sup>-</sup><br>15/2 <sup>+</sup>                                                                                                                                  | 714.00 <i>5</i><br>849                                                   | 100<br>100                                                                | 1261.50<br>1328.94                             | 15/2 <sup>-</sup><br>11/2 <sup>+</sup>                                                           | E2                 |                     | $E_{\gamma}$ : if uncertainty is correct no final level within 0.36 keV. |
| 2233.6                             | $(5/2^+)$                                                                                                                                                               | 1702.0 8<br>2233.6 <i>3</i>                                              | 100 <i>4</i><br>79 <i>5</i>                                               | 531.972<br>0.0                                 | 7/2 <sup>+</sup><br>5/2 <sup>+</sup>                                                             | D+Q<br>D+Q         | -0.73 18            | $\delta$ : +0.65 13 or +3.2 8.                                           |
| 2275.42                            | 7/2+,9/2+                                                                                                                                                               | 694.3 6<br>1557.6 5<br>1743.6 5<br>2156.9 5<br>2275 5 5                  | 39 <i>3</i><br>28 <i>3</i><br>62 <i>5</i><br>72 <i>11</i><br>100 <i>6</i> | 1581.33<br>718.02<br>531.972<br>118.736<br>0.0 | 5/2 <sup>+</sup><br>9/2 <sup>+</sup><br>7/2 <sup>+</sup><br>3/2 <sup>+</sup><br>5/2 <sup>+</sup> |                    |                     |                                                                          |
| 2343.13                            | 5/2+,7/2+,9/2+                                                                                                                                                          | 1811.1 5<br>1839.0 3<br>2099.0 6<br>2342.3 10                            | 51 7<br>100 10<br>41 8<br>41 16                                           | 531.972<br>504.24<br>243.959<br>0.0            | $7/2^+$<br>$(3/2)^+$<br>$7/2^+$<br>$5/2^+$                                                       |                    |                     |                                                                          |
| 2408.30                            | 5/2+,7/2+,9/2+                                                                                                                                                          | 1709.7 <i>4</i><br>2141.6 <i>4</i><br>2164.6 <i>6</i><br>2408.0 <i>3</i> | 65 7<br>100 9<br>43 9<br>39 5                                             | 698.746<br>266.861<br>243.959<br>0.0           | 5/2 <sup>+</sup><br>5/2 <sup>+</sup><br>7/2 <sup>+</sup><br>5/2 <sup>+</sup>                     |                    |                     |                                                                          |
| 2417.6                             | 5/2+,7/2+,9/2+                                                                                                                                                          | 2298.7 <i>4</i><br>2417.8 <i>6</i>                                       | 100 <i>14</i><br>21 7                                                     | 118.736<br>0.0                                 | 3/2 <sup>+</sup><br>5/2 <sup>+</sup>                                                             |                    |                     |                                                                          |
| 2446.5                             | 5/2+,7/2+,9/2+                                                                                                                                                          | 1747.6 8<br>2179.6 7<br>2446.5 5                                         | 100 <i>40</i><br>60 <i>20</i><br>70 <i>12</i>                             | 698.746<br>266.861<br>0.0                      | 5/2 <sup>+</sup><br>5/2 <sup>+</sup><br>5/2 <sup>+</sup>                                         |                    |                     |                                                                          |
| 2464.7<br>2468<br>2486.5<br>2511.5 | 5/2 <sup>+</sup> ,7/2 <sup>+</sup> ,9/2 <sup>+</sup><br>17/2 <sup>+</sup><br>7/2 <sup>+</sup> ,9/2 <sup>+</sup><br>5/2 <sup>+</sup> ,7/2 <sup>+</sup> ,9/2 <sup>+</sup> | 2345.9 <i>10</i><br>941<br>2242.5 8<br>2267.5 8                          | 100<br>100<br>100<br>100                                                  | 118.736<br>1527.04<br>243.959<br>243.959       | 3/2+<br>13/2+<br>7/2+<br>7/2+                                                                    |                    |                     |                                                                          |
| 2601<br>2764.38<br>2822.01         | $(15/2^+)$<br>19/2 <sup>+</sup><br>23/2 <sup>-</sup>                                                                                                                    | 1074<br>987.20 <i>10</i><br>847.10 <i>10</i>                             | 100<br>100                                                                | 1527.04<br>1777.18<br>1974.91                  | 13/2 <sup>+</sup><br>15/2 <sup>+</sup><br>19/2 <sup>-</sup>                                      | E2<br>E2           |                     |                                                                          |

|                         |                                                               |                                           |                   |                                                       |                                                                                                                                                                    | Adop                 | oted Levels                  | , Gammas (continued)                                |
|-------------------------|---------------------------------------------------------------|-------------------------------------------|-------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------|-----------------------------------------------------|
|                         |                                                               |                                           |                   |                                                       |                                                                                                                                                                    |                      | $\gamma$ ( <sup>103</sup> Pc | d) (continued)                                      |
| E <sub>i</sub> (level)  | $\mathbf{J}_i^{\pi}$                                          | ${\rm E_{\gamma}}^{\#}$                   | $I_{\gamma}^{\#}$ | $E_f$                                                 | $\mathbf{J}_f^{\pi}$                                                                                                                                               | Mult. <sup>†</sup>   | $\delta^{\ddagger}$          | Comments                                            |
| 2834                    | (17/2)+                                                       | 233<br>366<br>656<br>1057<br>1307<br>1573 |                   | 2601<br>2468<br>2178<br>1777.18<br>1527.04<br>1261.50 | $     \begin{array}{r}         \hline         (15/2^+) \\         17/2^+ \\         15/2^+ \\         15/2^+ \\         13/2^+ \\         15/2^-     \end{array} $ | M1<br>M1             |                              |                                                     |
| 2924                    |                                                               | 323<br>456<br>1147                        |                   | 2601<br>2468<br>1777.18                               | $(15/2^+)$<br>$17/2^+$<br>$15/2^+$                                                                                                                                 |                      |                              |                                                     |
| 3020.38                 | (21/2)+                                                       | 96<br>256.2 <i>1</i><br>552               |                   | 2924<br>2764.38<br>2468                               | 19/2 <sup>+</sup><br>17/2 <sup>+</sup>                                                                                                                             | M1+E2                | -0.03 2                      | δ: other: -0.12 13 from 256γ linear pol (1975Ki13). |
| 3071                    | (19/2+)                                                       | 147<br>237<br>470                         |                   | 2924<br>2834<br>2601                                  | $(17/2)^+$<br>$(15/2^+)$                                                                                                                                           | M1<br>E2             |                              |                                                     |
| 3382                    | (21/2)+                                                       | 311<br>362<br>458                         |                   | 3071<br>3020.38<br>2924                               | $(19/2^+)$<br>$(21/2)^+$                                                                                                                                           | M1                   |                              |                                                     |
| 3714                    | (23/2+)                                                       | 548<br>1407<br>332<br>643<br>694<br>701   |                   | 2834<br>1974.91<br>3382<br>3071<br>3020.38            | $(17/2)^+$<br>$19/2^-$<br>$(21/2)^+$<br>$(19/2^+)$<br>$(21/2)^+$                                                                                                   | E2<br>E1<br>M1<br>E2 |                              |                                                     |
| 3792.10<br>4056<br>4160 | 27/2 <sup>-</sup><br>25/2 <sup>+</sup><br>(25/2) <sup>+</sup> | 970.09 <i>5</i><br>1036<br>446<br>778     | 100               | 2924<br>2822.01<br>3020.38<br>3714<br>3382            | $23/2^{-} (21/2)^{+} (23/2^{+}) (21/2)^{+} (21/2)^{+}$                                                                                                             | E2<br>M1<br>E2       |                              |                                                     |
| 4587                    | (27/2 <sup>+</sup> )                                          | 1338<br>427<br>531                        |                   | 2822.01<br>4160<br>4056<br>2714                       | $23/2^{-}$<br>$(25/2)^{+}$<br>$25/2^{+}$<br>$(22/2^{+})$                                                                                                           | El<br>M1             |                              |                                                     |
| 4886.4<br>5025          | 31/2 <sup>-</sup><br>(29/2) <sup>+</sup>                      | 873<br>1094.3 2<br>438<br>865<br>968      | 100               | 3714<br>3792.10<br>4587<br>4160<br>4056               | $(23/2^+)$<br>$27/2^-$<br>$(27/2^+)$<br>$(25/2)^+$<br>$25/2^+$                                                                                                     | E2<br>E2<br>M1<br>E2 |                              |                                                     |
| 5458                    | (31/2+)                                                       | 1232<br>433<br>871                        |                   | 3792.10<br>5025<br>4587                               | $27/2^{-}$<br>$(29/2)^{+}$<br>$(27/2^{+})$                                                                                                                         | E1<br>M1<br>(E2)     |                              |                                                     |
| 5983                    | (33/2)+                                                       | 959<br>1097                               |                   | 5025<br>4886.4                                        | $(29/2)^+$<br>$(29/2)^+$<br>$31/2^-$                                                                                                                               | E2<br>E1             |                              |                                                     |
| 6048.3<br>6452          | 35/2 <sup>-</sup><br>(35/2 <sup>+</sup> )                     | 1161.90 <i>20</i><br>994                  | 100               | 4886.4<br>5458                                        | 31/2 <sup>-</sup><br>(31/2 <sup>+</sup> )                                                                                                                          | E2                   |                              |                                                     |

9

L

## $\gamma(^{103}\text{Pd})$ (continued)

| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | ${\rm E_{\gamma}}^{\#}$ | $\mathbf{E}_{f}$ | $\mathrm{J}_f^\pi$ | Mult. <sup>†</sup> | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | ${\rm E_{\gamma}}^{\#}$ | $E_f$   | $\mathbf{J}_f^{\pi}$ | Mult. <sup>†</sup> |
|------------------------|----------------------|-------------------------|------------------|--------------------|--------------------|------------------------|----------------------|-------------------------|---------|----------------------|--------------------|
| 7056                   | $(37/2)^+$           | 1007                    | 6048.3           | 35/2-              | E1                 | 13798                  | $(57/2)^+$           | 1590                    | 12208   | $(53/2)^+$           | E2                 |
|                        |                      | 1072                    | 5983             | $(33/2)^+$         | E2                 | 14932                  | $(59/2^+)$           | 1692                    | 13240   | $(55/2^+)$           | E2                 |
| 7316                   | 39/2-                | 1267                    | 6048.3           | $35/2^{-}$         |                    | 15487                  | $(61/2)^+$           | 1689                    | 13798   | $(57/2)^+$           | E2                 |
| 7593                   | $(39/2^+)$           | 1141                    | 6452             | $(35/2^+)$         |                    | 17357                  | $(65/2)^+$           | 1870                    | 15487   | $(61/2)^+$           | E2                 |
| 8212                   | $(41/2)^+$           | 1156                    | 7056             | $(37/2)^+$         | E2                 | 1912+x                 | (57/2)               | 1459                    | 453+x   | (53/2)               | E2                 |
| 8668                   | $43/2^{-}$           | 1352                    | 7316             | 39/2-              |                    |                        |                      | 1912                    | 0+x     |                      |                    |
| 8831                   | $(43/2^+)$           | 1238                    | 7593             | $(39/2^+)$         |                    | 3439+x                 | (61/2)               | 1394                    | 2045+x  |                      |                    |
| 9442                   | $(45/2)^+$           | 1230                    | 8212             | $(41/2)^+$         | E2                 |                        |                      | 1527                    | 1912+x  | (57/2)               | E2                 |
| 10119                  | $47/2^{-}$           | 1451                    | 8668             | $43/2^{-}$         |                    | 5003+x                 | (65/2)               | 1564                    | 3439+x  | (61/2)               | E2                 |
| 10190                  | $(47/2^+)$           | 1359                    | 8831             | $(43/2^+)$         |                    | 6662+x                 | (69/2)               | 1659                    | 5003+x  | (65/2)               | E2                 |
| 10741                  | $(49/2)^+$           | 1299                    | 9442             | $(45/2)^+$         | E2                 | 8449+x                 | (73/2)               | 1787                    | 6662+x  | (69/2)               | E2                 |
| 11638                  | $51/2^{-}$           | 1519                    | 10119            | $47/2^{-}$         |                    | 10359+x                | (77/2)               | 1910                    | 8449+x  | (73/2)               | E2                 |
| 11643                  | $(51/2^+)$           | 1453                    | 10190            | $(47/2^+)$         |                    | 12377+x                | (81/2)               | 2018                    | 10359+x | (77/2)               | E2                 |
| 12208                  | $(53/2)^+$           | 1467                    | 10741            | $(49/2)^+$         | E2                 | 14636+x                | (85/2)               | 2259                    | 12377+x | (81/2)               | E2                 |
| 13240                  | $(55/2^+)$           | 1597                    | 11643            | $(51/2^+)$         |                    |                        |                      |                         |         |                      |                    |

<sup>†</sup> Based on  $\alpha(K)$ exp and A<sub>2</sub> coef from  $\gamma(\theta)$  in (p,n $\gamma$ ) and on  $\gamma$  linear pol and or A<sub>2</sub>,A<sub>4</sub> coef from  $\gamma(\theta)$  in (HI,xn $\gamma$ ). Stretched intraband quadrupole transitions assumed to be E2.

 $^\ddagger$  Weighted average of (p,n $\gamma),$  (HI,xn $\gamma),$  decay if available.

<sup>#</sup> Weighted average of  $(p,n\gamma)$ ,  $(HI,xn\gamma)$ , decay if data are available and have comparable precision. If not, most precise value taken.

<sup>(a)</sup> Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on  $\gamma$ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

<sup>&</sup> Placement of transition in the level scheme is uncertain.





0.0 16.991 d 19

 $^{103}_{46}\text{Pd}_{57}$ 

|                                                             | Legend                                                                                                                                                                                        |
|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Level Scheme (continued)<br>Intensities: Type not specified | $\begin{array}{c c} & & I_{\gamma} < 2\% \times I_{\gamma}^{max} \\ \hline & & I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ \hline & & I_{\gamma} > 10\% \times I_{\gamma}^{max} \end{array}$ |



 $^{103}_{46}\text{Pd}_{57}$ 





 $^{103}_{46}\mathrm{Pd}_{57}$ 







16

 $^{103}_{46}\mathrm{Pd}_{57}\text{--}16$ 

 $^{103}_{46}\mathrm{Pd}_{57}\text{--}16$ 

From ENSDF



 $^{103}_{46}\mathrm{Pd}_{57}$ 



 $^{103}_{46}\mathrm{Pd}_{57}$