¹⁰³Sn ε decay (7.0 s) 2005Ka34,2005Ka48

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	D. De Frenne	NDS 110, 2081 (2009)	1-Mar-2009

Parent: ¹⁰³Sn: E=0; J^{π}=(5/2⁺); T_{1/2}=7.0 s 2; Q(ε)=7640 70; % ε +% β ⁺ decay=100.0

¹⁰³Sn-Q(ε): from 2005Ka34. Other: 7630 300 (syst,2003Au03).

2005Ka34,2005Ka48: ¹⁰³Sn isotope produced in ${}^{50}Cr({}^{58}Ni,\alpha n)$.

reaction at E=5 MeV/nucleon Ion-beam facility at GSI, recoil mass separator. Measured E γ , I γ , $\gamma\gamma$, $\beta\gamma$, $\beta\gamma\gamma$ using an array of three Silicon detectors, 17 Ge crystals. Total absorption β spectrum, delayed proton decay.

All data are from 2005Ka34. The Total absorption spectrum in 2005Ka34 shows that the decay scheme is highly incomplete. Large number of additional levels must be populated between 3.5 and 7.5 MeV.

 ε, β^+ radiations

E(level) [†]	\mathbf{J}^{π}	E(level) [†]	\mathbf{J}^{π}	E(level) [†]	E(level) [†]
0.0 1077.61 <i>18</i>	$(9/2^+)$ $(11/2^+)$ $(12/2^+)$	1428.91 <i>10</i> 1669.64 <i>18</i> 1008 5 5	(9/2+)	2176.83 <i>14</i> 2209.2 <i>3</i> 2320 1 6	3280.6 <i>3</i> 3462.1 <i>4</i>
1355.80 <i>10</i> 1396.81 <i>10</i>	(15/2)	2025.0 <i>3</i> 2148.92 <i>23</i>		2320.1 0 2812.7 <i>4</i> 3196.7? <i>4</i>	

 † From least-squares fit to $E\gamma's$ by the evaluator.

E(decay)	E(level)	Ιβ ⁺ ‡	$\mathrm{I}\varepsilon^{\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger\ddagger}$	Comments
$(4.18 \times 10^3 7)$	3462.1	0.9 3	0.15 5	5.3 1	1.0 3	av Eβ=1431 33; εK=0.128 8; εL=0.0163 10; εM+=0.00414 25
$(4.36 \times 10^3 7)$	3280.6	72	1 1	4.5 1	8 2	av E β =1517 33; ε K=0.111 7; ε L=0.0141 8; ε M+=0.00358 21
(4.83×10 ³ 7)	2812.7	52	0.5 2	5.0 2	52	av Eβ=1738 34; εK=0.078 4; εL=0.0100 6; εM+=0.00253 13
(5.46×10 ³ 7)	2176.83	< 0.5	< 0.03	>6.3	< 0.5	av Eβ=2040 34; εK=0.0512 23; εL=0.0065 3; εM+=0.00165 8
$(5.62 \times 10^3 7)$	2025.0	< 0.5	< 0.03	>6.3	< 0.5	av Eβ=2113 34; εK=0.0466 21; εL=0.0059 3; εM+=0.00150 7
(5.97×10 ³ 7)	1669.64	2.1 6	0.10 3	5.8 1	2.2 6	av Eβ=2283 34; εK=0.0378 16; εL=0.00481 20; εM+=0.00122 5

[†] From total absorption spectrum (TAS) (2005Ka34). The TAS data shows no direct population of the ground state of 103 In.

 ‡ Absolute intensity per 100 decays.

 $\gamma(^{103}{\rm In})$

Iγ normalization: from 2005Ka34. %εp=1.2 1 (2005Ka34).

Eγ	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	J_f^π
314.0 2 351.3 2 355.4 2 627.4 14	45 2 9 <i>I</i> 11 <i>I</i> 1.2 5	1669.64 1428.91 2025.0 2025.0	(9/2+)	1355.80 1077.61 1669.64 1396.81	(11/2 ⁺)

Continued on next page (footnotes at end of table)

			¹⁰³ S	n ε decay	(7.0 s)	2005Ka34,2005Ka48 (continued)
					$\gamma(^{10}$	³ In) (continued)
Eγ	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	
635.4 <i>5</i> <i>x</i> 643 1 <i>1</i>	4 <i>1</i> 15 <i>1</i>	2812.7		2176.83		-
752.1 2	8 1	2148.92		1396.81		
^x 780.0 ^T 2	3.0 5	0176.00		1255.00		
821.0 <i>I</i>	12 1	21/6.83		1355.80	(1 1 (a.t.)	
830.6" 2	2.9 5	1908.5		1077.61	$(11/2^{+})$	
853.0 5	3.4 5	2209.2		1355.80		
964.3 0 x002 7 2	3 I 7 I	2320.1		1355.80		
×1071 2 2	/ I 5 1					
1071.5 5	221	1077 61	$(11/2^{+})$	0.0	$(0/2^{+})$	
x1134 5 2	51	1077.01	(11/2)	0.0	(j/2)	
1272.8.3	195	1272.8	$(13/2^+)$	0.0	$(9/2^+)$	
1355.8 /	100	1355.80	(10/2)	0.0	$(9/2^+)$	
1396.8 <i>1</i>	43 2	1396.81		0.0	$(9/2^+)$	
1428.9 <i>1</i>	15 <i>I</i>	1428.91	$(9/2^+)$	0.0	$(9/2^+)$	
^x 1548.8 <i>3</i>	4 1					
^x 1579.8 4	4 1					
1610.9 2	13 <i>I</i>	3280.6		1669.64		
1669.3 <i>3</i>	51	1669.64		0.0	$(9/2^+)$	
1840.9 [#] 4	51	3196.7?		1355.80		
1908.5 5	4 1	1908.5		0.0	$(9/2^+)$	
^x 1958.8 3	11 <i>I</i>					
^x 2049.7 3	71					
2106.3 <i>3</i>	71	3462.1		1355.80		
2209.3 <i>3</i>	4 1	2209.2		0.0	$(9/2^+)$	
2813.2 5	10 2	2812.7		0.0	$(9/2^+)$	

[†] In coin with 351γ . [‡] For absolute intensity per 100 decays, multiply by 0.40 5. [#] Placement of transition in the level scheme is uncertain. ^x γ ray not placed in level scheme.

