⁵⁸Ni(⁵⁰Cr,4pnγ) 1997Pa25

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	D. De Frenne	NDS 110, 2081 (2009)	1-Mar-2009					

1997Pa25: ⁵⁸Ni(⁵⁰Cr,4pn γ), E(⁵⁸Ni)=261 MeV. Measured: E γ , I γ , $\gamma\gamma$, $\gamma(\theta)$ Nordball array with neutron and charged particle detectors and BaF₂ multiplicity filter. Deduced: ¹⁰³Cd levels, J^{π} .

¹⁰³Cd Levels

E(level)	$J^{\pi \dagger}$	T _{1/2}	E(level)	$J^{\pi \dagger}$	E(level)	$J^{\pi \dagger}$
0.0	$(5/2)^+$		2799.21 18		4778.9? 7	
187.88 8	$(7/2)^+$		3077.19 15	$(21/2)^+$	4813.61 18	$(27/2)^{-}$
740.02 8	$(9/2)^+$		3133.01 <i>13</i>	$(19/2)^{-}$	4836.25 24	
908.01 11	$(11/2)^+$		3205.72? 23		5040.0? 7	
1512.59 11	$(13/2)^+$		3253.21 19		5041.55 24	
1670.94 12	$(11/2)^{-}$		3596.65 19	$(23/2)^+$	5098.7 4	
1830.10 13	$(15/2)^+$		3658.61 18		5290.2? 7	
2184.67 12	$(17/2)^+$		3766.74 20	$(25/2)^+$	5547.42 23	
2314.05 12	$(15/2)^{-}$		4000.51 15	$(23/2)^{-}$	5714.21 <i>21</i>	$(31/2)^{-}$
2452.70 16	$(19/2)^+$	1.3^{\ddagger} ns 2	4025.64 22	$(27/2)^+$	6045.17 23	
2571.42 18	$(21/2)^+$		4096.11 17		6488.73 24	
2611.91 16	$(19/2)^+$		4545.72 21		6777.16 23	
2779.82? 21			4729.0		8010.97 25	

[†] Based on $\gamma(\theta)$, and observed cascades in ⁵⁸Ni(⁵⁰Cr,4pn γ) (1997Pa25); Apart from parentheses the Adopted values for J^{π} are the same.

[±] From γ (t)(1997Pa25). Not excluded that T_{1/2} is associated with 2571 keV level (1997Pa25).

$\gamma(^{103}\text{Cd})$

The anisotropy ratio R is defined as the ratio of the intensity of γ lines observed at two non-equivalent angles with respect to the beam axis (143° versus 79° and 101°). A stretched quadrupole should have an R value of about 1.5 and a pure dipole about 0.8.

E_{γ}	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult. [†]	δ	Comments
118.7 1	39 2	2571.42	$(21/2)^+$	2452.70	$(19/2)^+$	D		R=0.93 1.
168.0 2	0.7 4	908.01	$(11/2)^+$	740.02	(9/2)+	_		
170.1 1	6.6 3	3766.74	$(25/2)^+$	3596.65	$(23/2)^+$	D		R=0.79 2.
187.5 <i>I</i>	1.5 1	2799.21		2611.91	$(19/2)^+$			
187.9 <i>1</i>	100 4	187.88	$(7/2)^+$	0.0	$(5/2)^+$	M1(+E2)	≤0.1	R=0.87 1.
208.4 [‡] 1	3.4 2	2779.82?		2571.42	$(21/2)^+$			R=0.75 2.
250.2 [‡] 1	0.6 1	5290.2?		5040.0?				
258.9 1	24.7 13	4025.64	$(27/2)^+$	3766.74	$(25/2)^+$	D		R=0.81 1.
261.1 [‡] 1	0.4 1	5040.0?		4778.9?				
288.2 2	0.3 1	6777.16		6488.73				
317.9 <i>1</i>	1.4 <i>I</i>	1830.10	$(15/2)^+$	1512.59	$(13/2)^+$	D		R=0.70 15.
330.9 1	3.7 2	6045.17		5714.21	$(31/2)^{-}$			
354.8 1	2.7 2	2184.67	$(17/2)^+$	1830.10	$(15/2)^+$	D		R=0.83 5.
425.9 [‡] 1	1.7 <i>I</i>	3205.72?		2779.82?				
443.5 1	1.9 <i>1</i>	6488.73		6045.17				
552.2 1	7.3 5	740.02	$(9/2)^+$	187.88	$(7/2)^+$	D		R=0.76 9.
604.7 <i>1</i>	5.0 <i>3</i>	1512.59	$(13/2)^+$	908.01	$(11/2)^+$	D		R=0.73 11.
622.6 1	53 5	2452.70	(19/2)+	1830.10	(15/2)+	E2		R=1.45 2.

Continued on next page (footnotes at end of table)

⁵⁸Ni(⁵⁰Cr,4pnγ) 1997Pa25 (continued)

$\gamma(^{103}\text{Cd})$ (continued)

Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	Comments	
641.3 <i>1</i>	2.9 2	3253.21		2611.91	$(19/2)^+$			
643.1 <i>1</i>	22.1 12	2314.05	$(15/2)^{-}$	1670.94	$(11/2)^{-}$	E2	R=1.43 10.	
671.9 <i>1</i>	11.8 7	2184.67	$(17/2)^+$	1512.59	$(13/2)^+$	E2	R=1.5 3.	
689.0 2	0.9 1	3766.74	$(25/2)^+$	3077.19	$(21/2)^+$			
720.1 <i>1</i>	94 5	908.01	$(11/2)^+$	187.88	$(7/2)^+$	E2	R=1.43 1.	
740.0 <i>1</i>	54 4	740.02	$(9/2)^+$	0.0	$(5/2)^+$	E2	R=1.37 2.	
772.6 1	30 2	1512.59	$(13/2)^+$	740.02	$(9/2)^+$	E2	R=1.5 3.	
781.8 <i>1</i>	9.4 6	2611.91	$(19/2)^+$	1830.10	$(15/2)^+$	E2	R=1.43 5.	
801.4 <i>1</i>	17.8 10	2314.05	$(15/2)^{-}$	1512.59	$(13/2)^+$	D	R=0.89 9.	
810.6 <i>1</i>	4.1 2	4836.25		4025.64	$(27/2)^+$	D	R=0.70 13.	
813.1 <i>I</i>	36 2	4813.61	$(27/2)^{-}$	4000.51	$(23/2)^{-}$	E2	R=1.38 9.	
818.9 <i>1</i>	38 2	3133.01	$(19/2)^{-}$	2314.05	$(15/2)^{-}$	E2	R=1.45 2.	
859.6 <i>1</i>	4.3 3	3658.61		2799.21				
867.5 <i>1</i>	33 2	4000.51	$(23/2)^{-}$	3133.01	$(19/2)^{-}$	E2	R=1.39 9.	
887.1 <i>1</i>	3.9 2	4545.72		3658.61				
892.5 1	7.0 4	3077.19	$(21/2)^+$	2184.67	$(17/2)^+$			
900.6 1	26.6 14	5714.21	$(31/2)^{-}$	4813.61	$(27/2)^{-}$	E2	R=1.36 10.	
921.5 2	83 4	1830.10	$(15/2)^+$	908.01	$(11/2)^+$	E2	R=1.34 4.	
923.3 1	2.9 2	4000.51	$(23/2)^{-}$	3077.19	$(21/2)^+$			
930.9 1	24.5 14	1670.94	$(11/2)^{-}$	740.02	$(9/2)^+$		R=0.77 1.	
948.4 <i>1</i>	3.2 2	3133.01	$(19/2)^{-}$	2184.67	$(17/2)^+$			
962.9 <i>1</i>	2.2 2	4729.0		3766.74	$(25/2)^+$			
963.1 <i>1</i>	3.3 3	4096.11		3133.01	$(19/2)^{-}$			
968.5 <i>1</i>	4.6 3	2799.21		1830.10	$(15/2)^+$			
1001.7 1	3.1 2	5547.42		4545.72				
1001.9 [‡] 2	1.2 <i>I</i>	5098.7		4096.11				
1015.9 <i>1</i>	1.8 1	5041.55		4025.64	$(27/2)^+$			
1025.2 <i>1</i>	10.5 6	3596.65	$(23/2)^+$	2571.42	$(21/2)^+$	D	R=0.90 3.	
1046.5 <i>1</i>	1.7 <i>1</i>	3658.61		2611.91	$(19/2)^+$			
1063.0 <i>1</i>	10.5 6	6777.16		5714.21	$(31/2)^{-}$			
1144.1 2	1.3 1	3596.65	$(23/2)^+$	2452.70	$(19/2)^+$			
1195.3 <i>1</i>	26.7 14	3766.74	$(25/2)^+$	2571.42	$(21/2)^+$	E2	R=1.36 3.	
1233.8 <i>I</i>	2.5 2	8010.97		6777.16				
1331.9 <i>3</i>	0.5 1	5098.7		3766.74	$(25/2)^+$			
1429.9 9	0.8 1	4000.51	$(23/2)^{-}$	2571.42	$(21/2)^+$			
1573.2 [‡] 6	0.7 1	4778.9?		3205.72?			R=1.5 2.	

[†] From anisotropy values in ⁵⁸Ni(⁵⁰Cr,4pn γ). Stretched quadrupole transitions are assumed E2. [‡] Placement of transition in the level scheme is uncertain.

 $^{103}_{48}\text{Cd}_{55}$

 $^{103}_{\ 48}\mathrm{Cd}_{55}$