103 Cd ε decay (7.3 min)

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	D. De Frenne	NDS 110, 2081 (2009)	1-Mar-2009

Parent: ¹⁰³Cd: E=0.0; $J^{\pi}=(5/2)^+$; $T_{1/2}=7.3 \text{ min } I$; $Q(\varepsilon)=4142 \ I0$; $\mathscr{K}\varepsilon+\mathscr{K}\beta^+$ decay=100.0 1978Lh01, 1980Lh01: mass-separated activity from Mo(¹⁴N,ypxn). Measured: E γ , I γ , $\beta\gamma$, (K x ray) γ , $\gamma\gamma$ -coin, E β . Deduced: $Q(\varepsilon)$, ¹⁰³Ag levels, ($\varepsilon+\beta^+$) branches, log ft, J^{π} . 1980Ka05: mass-separated source via Sn(p,3pxn)Cd spallation. Measured: E γ , I γ , $T_{1/2}$, ce, $\gamma\gamma(t)$. Deduced: ¹⁰³Ag levels, J^{π} . 1980Ka05: ¹⁰⁴Pd(p,2n γ), E=19 MeV. Measured: $\gamma(\theta)$. Deduced: α . 1988Bo28: mass-separated source via Mo(HI,ypxn). Measured: $Q(\varepsilon)$.

¹⁰³Ag Levels

Level scheme taken from 1978Lh01. Level energies obtained using least-squares procedure of measured γ energies.

E(level)	$J^{\pi \dagger}$	T _{1/2}	Comments
0.0	7/2+	65.7 min 7	$T_{1/2}$: from 1975Di09. Deduced from ce decay curves. Others: 1966Ja12, 1962Pa05, 1960Pr14, 1955Lo25
27.54 4	$(9/2)^+$		E(level): consistent with $(1449\gamma)(27\gamma)$ coin relation, $I(\gamma+ce)(27\gamma,M1)$ for level intensity balance, and γ -ray pairs of $\Delta E=27$ keV including a g.s. transition.
134.45 5	$1/2^{-}$	5.7 s <i>3</i>	$T_{1/2}$: taken from 1962Wh02 ¹⁰³ Ag IT decay.
521.41 7	$(3/2)^{-}$		1/2
590.58 17	$11/2^+$		
590.79 7	$(5/2)^{-}$		
1079.91 6	$(5/2,7/2)^+$		
1083.53 16	1/2-,3/2-,5/2-		
1099.28 7	$(5/2,7/2,9/2)^+$		
1210.83 17			
1257.9 4			
1311.68 7	$(7/2)^+$		J ^{π} : consistent with γ -decay to 11/2 ⁺ state and log ft=6.0.
1422.07 11	$(3/2)^+$		
1461.80 7	$(5/2)^+$		
1476.23 7	$(5/2,7/2)^+$		
1552.09 12	+		
1556.96 <i>11</i>	+		
1705.14 9	3/2+		
1776.00 9	$(5/2,7/2)^+$		
1822.01 11			
1828.6 <i>3</i>			
1856.69 <i>16</i>			
1880.01 9	$(3/2, 5/2, 7/2)^+$		
1901.17 <i>13</i>	+		
1906.97 <i>21</i>			
1957.97 9	$(3/2, 5/2, 7/2)^+$		
1968.54 9	$(3/2, 5/2, 7/2)^+$		
2012.07 9	$(3/2, 5/2, 7/2)^+$		
2020.53 11			
2022.58 13	$(3/2, 5/2, 7/2)^+$		E(level): the levels at 2022.58 and 2020.52 keV are considered by 1980Ka05 as one level at 2021.8 keV.
2088.99 15	$(3/2, 5/2, 7/2)^+$		
2125.05 20	$(3/2, 5/2, 7/2)^+$		
2133.05 20	$(3/2, 5/2, 7/2)^+$		
2167.65 24	$(3/2, 5/2, 7/2)^+$		
2199.37 11	$(3/2)^+$		
2206.6 4			E(level): not confirmed by 1980Ka05.

Continued on next page (footnotes at end of table)

$^{103}{\rm Cd}~\varepsilon$ decay (7.3 min) (continued)

¹⁰³Ag Levels (continued)

E(level)	$J^{\pi \dagger}$	Comments
2245.15 16	$(3/2, 5/2, 7/2)^+$	
2273.81 16	$(3/2, 5/2, 7/2)^+$	
2287.8 <i>3</i>		
2356.10 16	$(3/2, 5/2, 7/2)^+$	
2401.12 11	$(3/2, 5/2, 7/2)^+$	
2439.42 12	$(3/2, 5/2, 7/2)^+$	
2440.43 19	$(3/2^+)$	
2485.15 17	$(3/2, 5/2, 7/2)^+$	
2521.09 9	$(3/2, 5/2, 7/2)^+$	
2586.97 25		
2597.73 14	$(3/2, 5/2, 7/2)^+$	
2658.1 <i>3</i>	$(3/2, 5/2, 7/2)^+$	
2662.09 20	$(3/2, 5/2, 7/2)^+$	
2707.86 15	$(3/2, 5/2, 7/2)^+$	
2708.69 21	$(3/2, 5/2, 7/2)^+$	1980Ka05 propose an almost completely different decay pattern for this level; We adopted the decay pattern of 1978Lh01.
2726.7? 8		
2778.1 4		
2796.1 <i>3</i>	$(3/2, 5/2, 7/2)^+$	
2821.9 <i>3</i>	$(3/2, 5/2, 7/2)^+$	
2855.60 22	$(3/2, 5/2, 7/2)^+$	
2888.84 11	$(3/2, 5/2, 7/2)^+$	
2980.62 16	$(3/2, 5/2, 7/2)^+$	
3005.53 19	$(3/2, 5/2, 7/2)^+$	

[†] From Adopted Levels.

 $(3/2, 5/2, 7/2)^+$

3005.53 19 3188.8 *3*

ε, β^+ radiations

From exp E(β⁺) deduced Q(ε)=4250 150 (1972IsZR), 4200 100 (1970BeYT), 4190 160 β-singles and 4310 220 βγ-coin (1978Lh01). Others: 1960Pr14, 1969Ha03.

E(decay)	E(level)	$I\beta^+$	Ιε [‡]	Log ft	$I(\varepsilon + \beta^+)^{\dagger \ddagger}$	Comments
(953 10)	3188.8		0.56 12	5.19 11	0.56 12	ε K= 0.8606; ε L= 0.11171 24; ε M+= 0.02773 7
(1136 10)	3005.53		0.57 10	5.34 9	0.57 10	ε K= 0.8614; ε L= 0.11101 18; ε M+= 0.02752 5
(1161 10)	2980.62		1.10 17	5.07 8	1.10 17	ε K= 0.8615; ε L= 0.11093 <i>18</i> ; ε M+= 0.02750 <i>5</i>
(1253 10)	2888.84		2.0 4	4.88 10	2.0 4	ε K= 0.8611; ε L= 0.11058 25; ε M+= 0.02740 7
(1286 10)	2855.60	0.0008 10	0.49 9	5.51 9	0.49 9	av $E\beta = 133 \ 22$; $\varepsilon K = 0.8607 \ 12$; $\varepsilon L = 0.1104 \ 3$;
						$\varepsilon M += 0.02736 8$
(1320 10)	2821.9	0.0022 24	0.90 19	5.27 10	0.90 19	av $E\beta = 148 \ 22; \ \varepsilon K = 0.8600 \ 16; \ \varepsilon L = 0.1102 \ 4;$
						$\varepsilon M += 0.02731 \ 9$
(1346 10)	2796.1	0.0016 15	0.46 8	5.58 9	0.46 8	av $E\beta = 159 \ 22; \ \varepsilon K = 0.8593 \ 20; \ \varepsilon L = 0.1101 \ 4;$
						$\varepsilon M += 0.02727 \ 10$
(1364 10)	2778.1	0.0008 8	0.20 5	5.95 12	0.20 5	av $E\beta = 167 \ 22; \ \varepsilon K = 0.8586 \ 23; \ \varepsilon L = 0.1100 \ 5;$
						$\varepsilon M += 0.02724 \ 11$
(1415 10)	2726.7?	0.0010 8	0.14 4	6.14 <i>13</i>	0.14 4	av $E\beta = 189\ 22$; $\varepsilon K = 0.856\ 4$; $\varepsilon L = 0.1095\ 6$;
						$\varepsilon M += 0.02713 \ 14$
(1433 10)	2708.69	0.015 10	1.78 24	5.04 7	1.79 24	av $E\beta = 197 \ 22; \ \varepsilon K = 0.855 \ 4; \ \varepsilon L = 0.1093 \ 6;$
						$\varepsilon M += 0.02708 \ 15$
(1434 10)	2707.86	0.016 11	1.9 <i>3</i>	5.02 8	1.9 <i>3</i>	av $E\beta = 197\ 22$; $\varepsilon K = 0.855\ 4$; $\varepsilon L = 0.1093\ 6$;

Continued on next page (footnotes at end of table)

¹⁰³Cd ε decay (7.3 min) (continued)

ϵ, β^+ radiations (continued)

E(decay)	E(level)	$\mathrm{I}\beta^+$ ‡	I ε^{\ddagger}	Log ft	$I(\varepsilon + \beta^+)^{\dagger \ddagger}$	Comments
						$\varepsilon M += 0.02708 \ 15$
(1480 10)	2662.09	0.010 6	0.83 18	5.4 1	0.84 18	av $E\beta = 217 22$; $\varepsilon K = 0.852 5$; $\varepsilon L = 0.1088 7$; $\varepsilon M + = 0.02695 18$
(1484 10)	2658.1	0.007 5	0.56 15	5.57 12	0.57 15	av $E\beta$ = 219 22; ϵ K = 0.852 5; ϵ L = 0.1088 8; ϵ M = 0.02602 10
(1544 10)	2597.73	0.021 10	1.04 16	5.34 8	1.06 16	av $E\beta = 245\ 22;\ \varepsilon K = 0.846\ 7;\ \varepsilon L = 0.1079\ 9;$
(1555 10)	2586.97	0.005 3	0.24 6	5.98 11	0.25 6	av $E\beta = 250 22$; $\epsilon K = 0.844 7$; $\epsilon L = 0.1077 10$;
(1621 10)	2521.09	0.07 3	2.1 3	5.07 7	2.2 3	av $E\beta = 278\ 22;\ \varepsilon K = 0.835\ 9;\ \varepsilon L = 0.1064\ 12;$
(1657 10)	2485.15	0.038 14	0.92 15	5.45 8	0.96 15	av $E\beta = 294\ 22;\ \varepsilon K = 0.829\ 10;\ \varepsilon L = 0.1056\ 14;$
(1702 10)	2440.43	0.020 7	0.39 7	5.85 8	0.41 7	av $\mathcal{E}\beta$ = 313 22; \mathcal{E} K= 0.821 12; \mathcal{E} L= 0.1044 15;
(1703 10)	2439.42	0.17 7	3.3 9	4.92 12	3.5 9	av $\mathcal{E}\beta$ = 314 22; \mathcal{E} K= 0.820 12; \mathcal{E} L= 0.1044 15;
(1741 10)	2401.12	0.27 9	4.2 7	4.84 8	4.5 7	av $E\beta = 330.22$; $\epsilon K = 0.812.13$; $\epsilon L = 0.1033.17$;
(1786 10)	2356.10	0.042 13	0.54 9	5.75 8	0.58 9	av $E\beta = 350.22$; $\varepsilon K = 0.801.14$; $\varepsilon L = 0.1018.19$;
(1854 10)	2287.8	0.039 14	0.37 10	5.95 12	0.41 11	av $E\beta = 380 22$; $\varepsilon K = 0.782 16$; $\varepsilon L = 0.0993 21$;
(1868 10)	2273.81	0.12 4	1.11 19	5.48 9	1.23 21	av $E\beta = 386\ 22;\ \varepsilon K = 0.777\ 17;\ \varepsilon L = 0.0987\ 22;$
(1897 10)	2245.15	0.12 3	0.99 15	5.54 7	1.11 16	av $E\beta = 398\ 22;\ \varepsilon K = 0.768\ 17;\ \varepsilon L = 0.0975\ 23;$
(1935 10)	2206.6	0.020 9	0.14 6	6.41 17	0.16 6	av $E\beta = -415 \ 22; \ \epsilon K = -0.755 \ 18; \ \epsilon L = -0.0958 \ 24;$
(1943 10)	2199.37	0.56 14	3.8 7	4.97 8	4.4 7	av $E\beta = -418 \ 22; \ \varepsilon K = -0.753 \ 19; \ \varepsilon L = -0.0955 \ 24;$
(1974 10)	2167.65	0.10 3	0.64 15	5.77 11	0.74 17	av $\mathcal{E}\beta$ = 432 22; \mathcal{E} K= 0.741 19; \mathcal{E} L= 0.0940 25; $\mathcal{E}\beta$ = 0.233 6
(2009 10)	2133.05	0.31 7	1.7 3	5.36 8	2.0 3	av $\mathcal{E}\beta$ = 448 22; ε K= 0.728 20; ε L= 0.092 3; ε M = 0.0228 7
(2017 10)	2125.05	0.091 22	0.48 9	5.91 9	0.57 10	av $E\beta = 451\ 22;\ \varepsilon K = 0.725\ 20;\ \varepsilon L = 0.092\ 3;$
(2053 10)	2088.99	0.56 13	2.6 5	5.19 8	3.2 5	av $E\beta = -467 \ 22; \ \epsilon K = -0.711 \ 21; \ \epsilon L = -0.090 \ 3;$
(2119 10)	2022.58	0.14 4	0.55 12	5.9 1	0.69 15	av $\mathcal{E}\beta$ = 496 23; ε K= 0.684 22; ε L= 0.087 3; ε M=- 0.0214 7
(2121 10)	2020.53	0.069 25	0.26 9	6.22 15	0.33 11	av $E\beta = 497 \ 23; \ \epsilon K = 0.683 \ 22; \ \epsilon L = 0.086 \ 3;$ sM+= 0.0214 7
(2130 10)	2012.07	0.40 8	1.45 21	5.48 7	1.85 25	av $E\beta = 501 23$; $\epsilon K = 0.679 22$; $\epsilon L = 0.086 3$; sM+= 0.0213 7
(2173 10)	1968.54	0.33 9	1.07 24	5.63 10	1.4 3	av $E\beta = 520.23$; $\epsilon K = 0.660.23$; $\epsilon L = 0.084.3$; sM $\pm - 0.0207.7$
(2184 10)	1957.97	0.63 13	2.0 4	5.37 8	2.6 4	av $E\beta = 525 23$; $\epsilon K = 0.655 23$; $\epsilon L = 0.083 3$;
(2235 10)	1906.97	0.07 3	0.21 8	6.37 16	0.28 10	av $E\beta = 548\ 23$; $\epsilon K = 0.633\ 23$; $\epsilon L = 0.080\ 3$; sM = 0.0198 8
(2241 10)	1901.17	0.08 3	0.21 8	6.36 17	0.29 9	av $E\beta = 550 23$; $\varepsilon K = 0.630 23$; $\varepsilon L = 0.080 3$; $\varepsilon M \pm - 0.0197 8$
(2262 10)	1880.01	0.90 17	2.3 4	5.33 8	3.2 5	av $E\beta = 560\ 23;\ \varepsilon E = 0.620\ 23;\ \varepsilon L = 0.078\ 3;$
(2285 10)	1856.69	0.04 4	0.11 8	6.7 4	0.15 11	av $E\beta = 570 \ 23; \ \varepsilon K = 0.610 \ 23; \ \varepsilon L = 0.077 \ 3; \ \varepsilon M + = 0.0191 \ 8$

Continued on next page (footnotes at end of table)

$^{103}{\rm Cd}~\varepsilon$ decay (7.3 min) (continued)

ϵ, β^+ radiations (continued)

E(decay)	E(level)	Ιβ ⁺ ‡	Ie‡	Log ft	$I(\varepsilon + \beta^+)^{\dagger \ddagger}$	Comments
(2313 10)	1828.6	0.06 4	0.13 7	6.59 24	0.19 10	av $E\beta = 582 \ 23$; $\varepsilon K = 0.597 \ 23$; $\varepsilon L = 0.075 \ 3$; $\varepsilon M + = 0.0187 \ 8$
(2320 10)	1822.01	0.23 7	0.51 14	6.01 12	0.74 19	av $E\beta$ = 585 23; ε K= 0.594 23; ε L= 0.075 3; ε M+= 0.0186 8
(2366 10)	1776.00	0.35 8	0.68 15	5.9 1	1.03 22	av $E\beta = 606 \ 23$; $\varepsilon K = 0.572 \ 23$; $\varepsilon L = 0.072 \ 3$; $\varepsilon M + = 0.0179 \ 8$
(2437 10)	1705.14	1.7 4	2.7 6	5.32 9	4.4 8	av $E\beta$ = 638 23; ε K= 0.540 23; ε L= 0.068 3; ε M+= 0.0169 8
(2585 10)	1556.96	0.46 11	0.56 13	6.06 11	1.02 23	av $E\beta = 704 \ 23$; $\varepsilon K = 0.474 \ 22$; $\varepsilon L = 0.060 \ 3$; $\varepsilon M + = 0.0148 \ 7$
(2590 10)	1552.09	0.37 10	0.44 12	6.16 12	0.81 21	av $E\beta$ = 706 23; ε K= 0.472 22; ε L= 0.060 3; ε M+= 0.0147 7
(2666 10)	1476.23	1.9 5	1.9 5	5.55 11	3.8 9	av $E\beta = 741 \ 23; \ \varepsilon K = 0.440 \ 21; \ \varepsilon L = 0.055 \ 3; \ \varepsilon M + = 0.0137 \ 7$
(2680 10)	1461.80	4.1 6	4.1 6	5.22 7	8.2 11	av $E\beta = 747 \ 23; \ \varepsilon K = 0.434 \ 21; \ \varepsilon L = 0.055 \ 3; \ \varepsilon M + = 0.0135 \ 7$
(2720 10)	1422.07	0.53 11	0.49 10	6.16 10	1.02 20	av $E\beta$ = 765 23; ε K= 0.418 21; ε L= 0.053 3; ε M+= 0.0130 7
(2830 10)	1311.68	0.9 3	0.70 22	6.04 14	1.6 5	av $E\beta = 815 \ 23; \ \varepsilon K = 0.376 \ 19; \ \varepsilon L = 0.0473 \ 24; \ \varepsilon M + = 0.0117 \ 6$
(2884 10)	1257.9	0.12 5	0.08 3	6.99 16	0.20 7	av E β = 840 23; ε K= 0.357 18; ε L= 0.0449 23; ε M+= 0.0111 6
(2931 10)	1210.83	0.29 6	0.19 4	6.64 9	0.48 9	av $E\beta = 861 \ 23; \ \varepsilon K = 0.340 \ 18; \ \varepsilon L = 0.0429 \ 22; \ \varepsilon M + = 0.0106 \ 6$
(3043 10)	1099.28	0.40 17	0.22 9	6.61 18	0.62 25	av $E\beta = 912 \ 23$; $\varepsilon K = 0.305 \ 16$; $\varepsilon L = 0.0384 \ 20$; $\varepsilon M + = 0.0095 \ 5$
(3058 10)	1083.53	0.27 6	0.15 4	6.79 10	0.42 9	av $E\beta = 920 \ 23; \ \varepsilon K = 0.300 \ 16; \ \varepsilon L = 0.0378 \ 20; \ \varepsilon M + = 0.0093 \ 5$
(3062 10)	1079.91	1.9 4	1.00 18	5.95 9	2.9 5	av $E\beta = 921 \ 23; \ \varepsilon K = 0.299 \ 16; \ \varepsilon L = 0.0377 \ 20; \ \varepsilon M + = 0.0093 \ 5$
(3551 10)	590.79	1.65 24	0.45 7	6.43 7	2.1 3	av $E\beta = 1147 \ 24$; $\varepsilon K = 0.186 \ 9$; $\varepsilon L = 0.0234 \ 12$; $\varepsilon M + = 0.0058 \ 3$
(4008 10)	134.45	2.9 8	0.49 13	8.0 ¹ <i>u</i>	3.4 9	av $E\beta = 1360 \ 24$; $\varepsilon K = 0.124 \ 6$; $\varepsilon L = 0.0155 \ 7$; $\varepsilon M + = 0.00383 \ 17$
3109 11	0.0	10.5 20	1.5 3	6.03 9	12.0 23	av $E\beta = 1423 \ 24; \ \varepsilon K = 0.110 \ 5; \ \varepsilon L = 0.0138 \ 6;$ $\varepsilon M \pm -0.00342 \ 15$

 εM += 0.00342 15 I($\varepsilon + \beta^+$): deduced from I $\gamma/\gamma \pm$, level scheme, intensity balance and ε/β^+ theory. E(decay): from 1988Bo28.

 † Calculated by evaluator from I($\gamma+ce)$ -imbalance at each level. ‡ Absolute intensity per 100 decays.

$\gamma(^{103}\text{Ag})$

I γ -normalization: normalization to absolute I γ is based on (ε + β ⁺)=12.0 23 to g.s. assuming no feeding to 27-keV level. α (K)exp: taken from 1980Ka05. Calculated via I γ and conversion electron data of the same authors.

 \mathbf{v}

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger @}$	E_i (level)	\mathbf{J}_i^π	E_f	J_f^π	Mult. [‡]	α #	Comments
27.56 4	11.0 21	27.54	(9/2)+	0.0	7/2+	M1	17.5 3	α (K)= 15.50; α (L)= 1.953; α (M)= 0.370 Mult.: I(γ +ce) balance about 27-keV level favors pure M1 character.
69.37 6	0.67 11	590.79	$(5/2)^{-}$	521.41	$(3/2)^{-}$	[M1]	1.21 6	$\alpha(K)$ = 1.039; $\alpha(L)$ = 0.1297; $\alpha(M)$ =0.02457; $\alpha(N+)$ =0.00494
134.44 5	30.1 10	134.45	1/2-	0.0	7/2+	E3	3.7	K/L=1.9 <i>I</i> (1980Ka05) α (K)= 2.274; α (L)= 1.150; α (M)= 0.2306; α (N+)= 0.0416 I_{γ} : from 1980Ka05.
187.5 7	2.0 1	2088.99	(3/2,5/2,7/2)+	1901.17	+	M1	0.074 13	$\dot{\alpha}$ (K)exp=0.079 <i>14</i> (1980Ka05) E _{γ} ,I _{γ} : from 1980Ka05.
242.0 ^{&} 7	0.6 2	2199.37	$(3/2)^+$	1957.97	$(3/2, 5/2, 7/2)^+$			E_{γ} : observed only by 1980Ka05.
243.1 4	12.6 4	1705.14	3/2+	1461.80	$(5/2)^+$	M1,E2	0.050 13	α (K)exp=0.047 8 (1980Ka05) E _{γ} ,I _{γ} : from 1980Ka05.
264.4 6	1.1 3	1822.01		1556.96	+			
296.7 6	0.8 3	2199.37	$(3/2)^+$	1901.17	+			
318.0 8	0.2 I	2199.37	$(3/2)^+$	1880.01	$(3/2,5/2,7/2)^{+}$			
3/0.8 6	0.6 2	2199.37	$(3/2)^+$	1828.6	(512 712 012)+			
3/7.0 /	1.3 0	14/6.23	(5/2, 7/2)	1099.28	(5/2, //2,9/2)			
381.7 [∞] 2 386.97 7	1.1 <i>3</i> 30.8 <i>10</i>	1461.80 521.41	$(5/2)^+$ $(3/2)^-$	1079.91 134.45	(5/2,7/2) ⁺ 1/2 ⁻	M1,E2	0.0108 9	E _γ : observed only by 1980Ka05. $\alpha(K)=0.01002; \alpha(L)=0.00119; \alpha(M)=0.00023$ $\alpha(K)\exp=0.0115 \ 17(1980Ka05)$ I _γ : from 1980Ka05.
387.2 ^{&}	0.8	2287.8		1901.17	+			E_{γ} : observed only by 1978Lh01.
442.2 <mark>&</mark> 8	1.4.7	2401.12	$(3/2, 5/2, 7/2)^+$	1957.97	$(3/2, 5/2, 7/2)^+$			E _w : observed only by 1978Lh01.
456.34 7	25.0 8	590.79	$(5/2)^{-}$	134.45	1/2-	M1,E2		α (K)exp=0.0074 <i>11</i> (1980Ka05)
					,	,		I_{γ} : from 1980Ka05.
								Mult.: from $\alpha(K)$ exp. If $J^{\pi's}$ of 590 and 134 keV levels are correct M1 is excluded.
463.7 6	1.3 4	2020.53		1556.96	+			
477.12 20	2.0 3	1556.96	+	1079.91	$(5/2,7/2)^+$			
493.1 ^{&} 2	0.9 2	1083.53	1/2-,3/2-,5/2-	590.79	$(5/2)^{-}$			E_{γ} : observed only by 1980Ka05.
494.3 4	4.4 20	2199.37	$(3/2)^+$	1705.14	3/2+			
496.2 4	1.5 5	1957.97	$(3/2, 5/2, 7/2)^+$	1461.80	$(5/2)^+$			
520.3 8	0.2 1	2401.12	$(3/2, 5/2, 7/2)^+$	1880.01	$(3/2, 5/2, 7/2)^+$			
*526.69 32	1.0 2							
^530.86 21	4.4 7	2000.00	$(2 0 \in (0, \pi)(2)^{+}$	1556.06	+			
532.1 4	4.8 3	2088.99	$(3/2, 5/2, 7/2)^{+}$	1556.96		M1,E2		α (K)exp=0.0064 <i>10</i> (1980Ka05) I _{γ} : from 1980Ka05.

$^{103}{\rm Cd}~\varepsilon$ decay (7.3 min) (continued)

$\gamma(^{103}\text{Ag})$ (continued)

${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger @}$	E _i (level)	J_i^π	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	Comments
544.4 4	3.0 8	2401.12	$(3/2, 5/2, 7/2)^+$	1856.69			
546.4 4	3.0 8	1968.54	$(3/2, 5/2, 7/2)^+$	1422.07	$(3/2)^+$		
552.60 10	3.0 2	2521.09	(3/2,5/2,7/2)+	1968.54	(3/2,5/2,7/2)+	M1,E2	α (K)exp=0.0044 <i>10</i> (1980Ka05) I _v : from 1980Ka05.
562.2 4	1.3 4	1083.53	1/2-,3/2-,5/2-	521.41	$(3/2)^{-}$		
^x 562.9 4	6.7 30						
563.0 4	73	590.58	$11/2^{+}$	27.54	$(9/2)^+$		
575.2 ^{&} 7	1.1 3	2133.05	$(3/2, 5/2, 7/2)^+$	1556.96	+		E_{γ} : observed only by 1980Ka05.
598.8 7	1.0 4	2020.53		1422.07	$(3/2)^+$		
620.09 16	3.0 3	1210.83		590.79	$(5/2)^{-}$		
625.2 4	9.0 18	1705.14	3/2+	1079.91	$(5/2,7/2)^+$	M1,E2	α (K)exp=0.0043 <i>12</i> (1980Ka05) I _{γ} : from 1980Ka05.
^x 626.21 9	14.9 5						
627.0 4	10.9 20	2088.99	$(3/2, 5/2, 7/2)^+$	1461.80	$(5/2)^+$	M1,E2	α (K)exp=0.0056 <i>12</i> (1980Ka05) E _{γ} ,I _{γ} : from 1980Ka05.
640.8 ^{&} 7	1.8 4	2662.09	$(3/2, 5/2, 7/2)^+$	2020.53			E_{γ} : observed only by 1980Ka05.
643.1 5	2.6 7	2199.37	$(3/2)^+$	1556.96	+		
645.0 <mark>&</mark> 6	1.1 6	2888.84	$(3/2, 5/2, 7/2)^+$	2245.15	$(3/2, 5/2, 7/2)^+$		
648.0 10	1.4 5	2199.37	$(3/2)^+$	1552.09	+		
656.66 <mark>&</mark> 35	1.6 4	2133.05	$(3/2, 5/2, 7/2)^+$	1476.23	$(5/2,7/2)^+$		
663.4 4	2.6 2	2439.42	$(3/2,5/2,7/2)^+$	1776.00	$(5/2,7/2)^+$	M1,E2	α (K)exp=0.005 <i>15</i> (1980Ka05) I ₂ : from 1980Ka05.
666.8 4	2.0 6	2088.99	$(3/2, 5/2, 7/2)^+$	1422.07	$(3/2)^+$		1
667.2 5	1.2 5	1257.9		590.79	$(5/2)^{-}$		
677.0 4	2.7 2	1776.00	$(5/2,7/2)^+$	1099.28	(5/2,7/2,9/2)+	M1,E2	α (K)exp=0.004 <i>l</i> (1980Ka05) I _{γ} : from 1980Ka05.
^x 681.6 5	1.1 3						
688.7 6	1.1 4	1210.83		521.41	$(3/2)^{-}$		
696.3 6	0.8 4	1776.00	$(5/2,7/2)^+$	1079.91	$(5/2,7/2)^+$		
703.9 ^{&} 7	0.9 2	2662.09	$(3/2, 5/2, 7/2)^+$	1957.97	$(3/2, 5/2, 7/2)^+$		E_{γ} : observed only by 1980Ka05.
721.1 4	6.1 <i>3</i>	1311.68	$(7/2)^+$	590.58	$11/2^{+}$	M1,E2	α (K)exp=0.0025 5 (1980Ka05)
							I_{γ} : from 1980Ka05. Mult : from $\alpha(K)$ exp. If $I^{\pi'}$ s of 1311 and 590 keV levels are correct M1 is
					4		excluded.
722.0 6	1.5 6	22/3.81	$(3/2,5/2,7/2)^+$	1552.09	(5/0.7/0)+	M1 E2	$(\mathbf{V}) = 0.0024.5(1000\mathbf{V}, 05)$
/23.14	10.2 10	2199.37	(3/2)	14/6.23	(5/2, //2)	M1,E2	α (K)exp=0.0024 5 (1980Ka05) I _y : from 1980Ka05.
734.4 ^{&} 4	1.7 8	2439.42	$(3/2, 5/2, 7/2)^+$	1705.14	3/2+		E_{γ} : observed only by 1978Lh01.
736.4 4	0.5 2	1257.9		521.41	$(3/2)^{-}$		
737.5 4	0.9 3	2199.37	$(3/2)^+$	1461.80	$(5/2)^+$		
739.1 ^{&} 2	<1.0	1822.01		1083.53	1/2-,3/2-,5/2-		Only observed by 1980Ka05.
739.91 32	1.8 2	2708.69	$(3/2, 5/2, 7/2)^+$	1968.54	$(3/2, 5/2, 7/2)^+$		

$^{103}{\rm Cd}\,\varepsilon$ decay (7.3 min) (continued)

$\gamma(^{103}\text{Ag})$ (continued)

${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger @}$	E _i (level)	\mathbf{J}_i^π	E_f	J_f^π	Mult. [‡]	Comments
749.83 21 782.0 4 *789.71 21	2.6 <i>3</i> 1.0 <i>3</i> 1.2 <i>3</i>	2707.86 2662.09	$(3/2,5/2,7/2)^+$ $(3/2,5/2,7/2)^+$	1957.97 1880.01	$(3/2,5/2,7/2)^+$ $(3/2,5/2,7/2)^+$		
799.67 ^{&} 27 807.65 20	2.8 <i>4</i> 1.0 <i>4</i>	2888.84 1906.97	(3/2,5/2,7/2)+	2088.99 1099.28	(3/2,5/2,7/2) ⁺ (5/2,7/2,9/2) ⁺	M1,E2	E_{γ} : observed only by 1978Lh01. α (K)exp=0.0010 4 (1980Ka05) I_{γ} : from 1980Ka05.
815.73 17	3.0 2	2521.09	(3/2,5/2,7/2)+	1705.14	3/2+	M1,E2	$\alpha'(K)\exp=0.0011 \ 4 \ (1980Ka05)$ I _y : from 1980Ka05.
825.5 ^{&} 7 ^x 835.09 <i>31</i>	1.2 <i>3</i> 1.9 <i>3</i>	2726.7?		1901.17	+		E_{γ} : only proposed by 1980Ka05.
835.3 ^{&} 7 840.3 <i>4</i>	1.8 <i>4</i> 2.8 <i>11</i>	2658.1 2662.09	$(3/2,5/2,7/2)^+$ $(3/2,5/2,7/2)^+$	1822.01 1822.01			E_{γ} : observed only by 1980Ka05.
852.8 <mark>&</mark> 7	1.2 3	2821.9	$(3/2, 5/2, 7/2)^+$	1968.54	$(3/2, 5/2, 7/2)^+$		E_{γ} : observed only by 1980Ka05.
855.4 ^{&} 7 859.12 22 866.0 4 868.6 4	1.4 <i>3</i> 2.0 <i>4</i> 2.8 <i>9</i> 1.7 <i>5</i>	2980.62 1957.97 2888.84 2888.84	$(3/2,5/2,7/2)^+$ $(3/2,5/2,7/2)^+$ $(3/2,5/2,7/2)^+$ $(3/2,5/2,7/2)^+$	2125.05 1099.28 2022.58 2020.53	$(3/2,5/2,7/2)^+$ $(5/2,7/2,9/2)^+$ $(3/2,5/2,7/2)^+$		E_{γ} : observed only by 1980Ka05.
871.0 <i>4</i> 878 27 26	1.2 3	1461.80	$(5/2)^+$ $(3/2,5/2,7/2)^+$	590.79	$(5/2)^{-}$ $(5/2,7/2)^{+}$		
878.27 20 880.5 ^{&} 7 881.9 4	0.9 2 2.6 10	3005.53 2658.1	$(3/2, 5/2, 7/2)^+$ $(3/2, 5/2, 7/2)^+$ $(3/2, 5/2, 7/2)^+$	2125.05 1776.00	$(3/2,7/2)^+$ $(3/2,5/2,7/2)^+$ $(5/2,7/2)^+$		E_{γ} : observed only by 1980Ka05.
882.1 ^{&} 7 882.3 4 *883.1 5	0.8 2 3.0 11 0.8 2	2586.97 2439.42	(3/2,5/2,7/2)+	1705.14 1556.96	3/2 ⁺		E_{γ} : observed only by 1980Ka05.
887.5 <i>3</i> <i>x</i> 906.4 <i>9</i>	2.0 <i>4</i> 1.1 <i>5</i>	2439.42	(3/2,5/2,7/2)+	1552.09	+		
912.7 <mark>&</mark> 7	0.6 4	2012.07	$(3/2, 5/2, 7/2)^+$	1099.28	(5/2,7/2,9/2)+		E_{γ} : observed only by 1978Lh01.
920.1 ^{&} 7 920.46 <i>31</i> 924.7 7 931.5 <i>15</i> 939.3 <i>5</i>	0.9 2 1.8 3 1.0 5 4.2 4 2.0 4	2821.9 2888.84 2401.12 2707.86 2401.12	$(3/2,5/2,7/2)^+$ $(3/2,5/2,7/2)^+$ $(3/2,5/2,7/2)^+$ $(3/2,5/2,7/2)^+$ $(3/2,5/2,7/2)^+$	1901.17 1968.54 1476.23 1776.00 1461.80	+ $(3/2,5/2,7/2)^+$ $(5/2,7/2)^+$ $(5/2,7/2)^+$ $(5/2)^+$		E_{γ} : observed only by 1980Ka05.
940.4 ^{&} 5	3.0 6	1461.80	$(5/2)^+$	521.41	(3/2)-		
949.09 17	4.5 3	1083.53	1/2 ⁻ ,3/2 ⁻ ,5/2 ⁻	134.45	1/2-	M1,E2	α (K)exp=0.00082 20 (1980Ka05) I _y : from 1980Ka05.
961.6 6 963.1 4	2.5 9 14.2 57	2273.81 2439.42	$(3/2,5/2,7/2)^+$ $(3/2,5/2,7/2)^+$	1311.68 1476.23	$(7/2)^+$ $(5/2,7/2)^+$		
981.8 ^{&} 7	2.4 5	2888.84	$(3/2,5/2,7/2)^+$	1906.97	(-,-,-,=)		E_{γ} : observed only by 1980Ka05.
987.6 ^{&} 7 987.9 6	<0.5 1.8 5	2199.37 2888.84	$(3/2)^+$ $(3/2,5/2,7/2)^+$	1210.83 1901.17	+		E_{γ} : observed only by 1980Ka05.

J

 $^{103}_{47}\mathrm{Ag}_{56}$ -7

 $^{103}_{47}\mathrm{Ag}_{56}$ -7

$\gamma(^{103}\text{Ag})$ (continued)

${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult. [‡]	Comments
1005.6 4	2.2.3	2088.99	$(3/2, 5/2, 7/2)^+$	1083.53	$1/2^{-}.3/2^{-}.5/2^{-}$		
1009.4.5	2.3.3	2088.99	$(3/2,5/2,7/2)^+$	1079.91	$(5/2,7/2)^+$		
1023.7 6	1.0 4	2485.15	$(3/2,5/2,7/2)^+$	1461.80	$(5/2)^+$		
1034.87 22	2.1 4	2586.97	(-1)-1)-1)	1552.09	+		
1045.40 18	2.1 4	2597.73	$(3/2, 5/2, 7/2)^+$	1552.09	+		
1052.51 19	9.8 5	1079.91	$(5/2,7/2)^+$	27.54	(9/2)+	M1,E2	α (K)exp=0.00065 <i>10</i> (1980Ka05) I _{γ} : from 1980Ka05.
1061.5 ^{&} 7	0.6 2	2888.84	$(3/2, 5/2, 7/2)^+$	1828.6			E_{v} : observed only by 1980Ka05.
1068.4 11	1.8 9	2167.65	$(3/2, 5/2, 7/2)^+$	1099.28	$(5/2,7/2,9/2)^+$		E_{ν} : observed only by 1978Lh01.
1071.76 <i>18</i>	4.4 2	1099.28	(5/2,7/2,9/2)+	27.54	$(9/2)^+$	M1,E2	$\alpha'(K)\exp=0.00083$ 15 (1980Ka05) I _y : from 1980Ka05.
1078.6 ^{&} 7	1.3 3	2855.60	$(3/2, 5/2, 7/2)^+$	1776.00	$(5/2,7/2)^+$		E_{γ} : observed only by 1980Ka05.
1079.90 7	46.5 12	1079.91	$(5/2,7/2)^+$	0.0	7/2+		
1087.2 10	2.0 7	2167.65	$(3/2, 5/2, 7/2)^+$	1079.91	$(5/2,7/2)^+$		
1089.4 4	5.8 12	2401.12	$(3/2, 5/2, 7/2)^+$	1311.68	$(7/2)^+$		
1099.32 7	14.3 5	1099.28	$(5/2,7/2,9/2)^+$	0.0	7/2+		
1099.6 <mark>&</mark> 7	4.0 8	3005.53	$(3/2, 5/2, 7/2)^+$	1906.97			E_{γ} : observed only by 1980Ka05.
1114.51 <i>19</i>	4.5 5	1705.14	3/2+	590.58	$11/2^{+}$		
1124.1 <mark>&</mark> 7	1.3 3	2980.62	$(3/2, 5/2, 7/2)^+$	1856.69			E_{v} : observed only by 1980Ka05.
1158.0 8	1.0 5	2980.62	$(3/2, 5/2, 7/2)^+$	1822.01			, 55
1184.1 <i>3</i>	3.3 5	1705.14	3/2+	521.41	$(3/2)^{-}$		
1208.2 6	1.9 7	2287.8	,	1079.91	$(5/2,7/2)^+$		
1246.6 4	1.6 9	2707.86	$(3/2, 5/2, 7/2)^+$	1461.80	$(5/2)^+$		
1284.1 11	2.0 11	1311.68	$(7/2)^+$	27.54	$(9/2)^+$		
1287.61 10	14.7 7	1422.07	$(3/2)^+$	134.45	1/2-	E1	α (K)exp=0.00021 4 (1980Ka05) I _y : from 1980Ka05.
1301.7 5	3.2 14	2401.12	$(3/2, 5/2, 7/2)^+$	1099.28	$(5/2,7/2,9/2)^+$		·
1307.2 5	0.9 5	1828.6		521.41	$(3/2)^{-}$		
1311.66 7	15.6 6	1311.68	$(7/2)^+$	0.0	7/2+	M1,E2	α (K)exp=0.00055 8 (1980Ka05) I _{γ} : from 1980Ka05.
1359.0 5	2.1 7	2439.42	$(3/2, 5/2, 7/2)^+$	1079.91	$(5/2,7/2)^+$		
1360.2 4	2.5 9	2821.9	$(3/2, 5/2, 7/2)^+$	1461.80	$(5/2)^+$		
1377.1 5	1.2 3	1968.54	$(3/2, 5/2, 7/2)^+$	590.79	(5/2)-		
1412.83 17	2.9 4	2888.84	$(3/2, 5/2, 7/2)^+$	1476.23	$(5/2,7/2)^+$		
1420.8 ^{&} 14	0.7 5	2012.07	$(3/2, 5/2, 7/2)^+$	590.79	$(5/2)^{-}$		E_{γ} : observed only by 1978Lh01.
1428.7 4	3.2 3	2980.62	$(3/2, 5/2, 7/2)^+$	1552.09	+		
1434.0 4	2.5 3	1461.80	$(5/2)^+$	27.54	(9/2)+		
1441.24 15	4.3 4	2521.09	$(3/2, 5/2, 7/2)^+$	1079.91	$(5/2,7/2)^+$		
1447.1 5	6.0 12	1968.54	$(3/2, 5/2, 7/2)^+$	521.41	$(3/2)^{-}$		
1447.6 ^{&} 7	0.20 4	3005.53	$(3/2, 5/2, 7/2)^+$	1556.96	+		E_{γ} : observed only by 1980Ka05.
1448.7 <i>1</i>	47.4 18	1476.23	$(5/2,7/2)^+$	27.54	$(9/2)^+$		

 ∞

$^{103}\mathbf{Cd}\ \varepsilon$ decay (7.3 min) (continued)

$\gamma(^{103}\text{Ag})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger @}$	E _i (level)	\mathbf{J}_i^π	E_f	J_f^π	Mult. [‡]	Comments
1461.81 7	100	1461.80	$(5/2)^+$	0.0	7/2+	M1,E2	α(K)exp=0.00032 3 (1980Ka05)
1476.27 11	16.8 6	1476.23	(5/2,7/2)+	0.0	7/2+	M1,E2	I_{γ} : from 1980Ka05. α (K)exp=0.00029 4 (1980Ka05) L: from 1980Ka05
1499.15 26	2.2 3	2020.53		521.41	(3/2)-		
1500.4 ^{&} 7	0.7 2	2597.73	$(3/2, 5/2, 7/2)^+$	1099.28	(5/2,7/2,9/2)+		E_{γ} : observed only by 1980Ka05.
1518.0 5	1.4 <i>3</i>	2597.73	$(3/2, 5/2, 7/2)^+$	1079.91	$(5/2,7/2)^+$		
1529.29 17	4.9 5	3005.53	$(3/2, 5/2, 7/2)^+$	1476.23	$(5/2,7/2)^+$		
1552.00 15	21.1 8	1552.09	+	0.0	7/2+	M1,E2	α(K)exp=0.00031 8 (1980Ka05) I _v : from 1980Ka05.
1556.94 <i>14</i>	19.5 7	1556.96	+	0.0	7/2+	M1,E2	α(K)exp=0.0032 8 (1980Ka05) I _v : from 1980Ka05.
1567.5 5	3.0 11	2088.99	$(3/2, 5/2, 7/2)^+$	521.41	$(3/2)^{-}$		
1570.6 5	11.2 34	1705.14	3/2+	134.45	1/2-	E1	α (K)exp<0.0015 (1980Ka05) I_{v} : from 1980Ka05.
1573.7 <mark>&</mark> 5		2658.1	$(3/2, 5/2, 7/2)^+$	1083.53	1/2-,3/2-,5/2-		,
1627.9 <mark>&</mark> 5	1.2 3	2707.86	$(3/2, 5/2, 7/2)^+$	1079.91	$(5/2,7/2)^+$		E_{ν} : observed only by 1978Lh01.
1636.4 8	1.9 7	3188.8	$(3/2, 5/2, 7/2)^+$	1552.09	+		,
^x 1637.65 ^{&} 35	1.7.3						
^x 1646.4 4	1.2.3						
1668.84 25	1.9.3	2980.62	$(3/2.5/2.7/2)^+$	1311.68	$(7/2)^+$		
1677.8 6	1.3 4	2199.37	$(3/2)^+$	521.41	$(3/2)^{-}$		
1685.22 39	1.4 4	2206.6		521.41	$(3/2)^{-}$		
^x 1693.22 19	5.2 5						
1694.2 4	1.3 6	1828.6		134.45	$1/2^{-}$		
1704.98 13	4.3 4	1705.14	3/2+	0.0	7/2+		
^x 1718.65 15	3.6 <i>3</i>						
1748.45 10	12.4 7	1776.00	$(5/2,7/2)^+$	27.54	$(9/2)^+$		
1756.35 34	1.4 <i>3</i>	2855.60	$(3/2, 5/2, 7/2)^+$	1099.28	$(5/2,7/2,9/2)^+$		
1766.64 13	5.4 <i>4</i>	1901.17	+ .	134.45	1/2-		
1775.79 21	2.3 3	1776.00	$(5/2,7/2)^+$	0.0	7/2+		
1776.1 X 7	1.6 4	2855.60	$(3/2, 5/2, 7/2)^+$	1079.91	$(5/2,7/2)^+$		E_{γ} : observed only by 1980Ka05.
1808.74 <i>21</i>	2.9 <i>3</i>	2888.84	$(3/2, 5/2, 7/2)^+$	1079.91	$(5/2,7/2)^+$		
1822.02 11	9.0 5	1822.01		0.0	7/2+		
1834.18 11	8.3 5	1968.54	$(3/2, 5/2, 7/2)^+$	134.45	1/2-		
1856.67 17	4.3 4	1856.69		0.0	7/2+		
1879.96 9	28.4 9	1880.01	$(3/2, 5/2, 7/2)^+$	0.0	7/2+		
1880 ^{&}		1906.97		27.54	$(9/2)^+$		
1907.5 8	1.4 6	1906.97		0.0	7/2+		
1919.00 18	3.5 4	2440.43	$(3/2^{+})$	521.41	$(3/2)^{-}$		
1930.23 11	16.3 7	1957.97	$(3/2, 5/2, 7/2)^+$	27.54	$(9/2)^+$		
1954 ^{&}	2	2088.99	$(3/2, 5/2, 7/2)^+$	134.45	1/2-		E_{γ} : observed only by 1978Lh01.

9

$^{103}\mathbf{Cd}\ \varepsilon$ decay (7.3 min) (continued)

$\gamma(^{103}\text{Ag})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger @}$	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Comments
^x 1955.9 5	1.7.2				
1958.5 5	2.5 2	1957.97	$(3/2, 5/2, 7/2)^+$	$0.0 7/2^+$	
1984.67 14	4.9 4	2012.07	$(3/2, 5/2, 7/2)^+$	27.54 (9/2)+	
1999.0 7	1.5 5	2521.09	$(3/2, 5/2, 7/2)^+$	521.41 (3/2)-	
2011.95 11	10.9 5	2012.07	$(3/2, 5/2, 7/2)^+$	$0.0 7/2^+$	
2022.53 13	8.7 5	2022.58	$(3/2, 5/2, 7/2)^+$	$0.0 7/2^+$	
2064.63 35	3.0 4	2199.37	$(3/2)^+$	134.45 1/2-	
2067.9 7	0.9 3	2658.1	$(3/2, 5/2, 7/2)^+$	590.79 (5/2)-	
2097.34 23	2.7 4	2125.05	$(3/2, 5/2, 7/2)^+$	$27.54 (9/2)^+$	
2117.6 6	1.0 3	2708.69	$(3/2, 5/2, 7/2)^+$	590.79 (5/2)-	
2125.5 4	2.2 3	2125.05	$(3/2, 5/2, 7/2)^+$	$0.0 7/2^+$	
2133.03 20	16.7 9	2133.05	$(3/2, 5/2, 7/2)^+$	$0.0 7/2^+$	
2137 <mark>&</mark>		2658.1	$(3/2, 5/2, 7/2)^+$	521.41 (3/2)-	E_{ν} : observed only by 1978Lh01.
2167.66 25	2.5 3	2167.65	$(3/2, 5/2, 7/2)^+$	$0.0 7/2^+$, , , , , , , , , , , , , , , , , , , ,
2199.45 14	12.5 6	2199.37	$(3/2)^+$	$0.0 7/2^+$	
2245.12 16	9.5 5	2245.15	$(3/2, 5/2, 7/2)^+$	$0.0 7/2^+$	
2257.1 6	1.0 3	2778.1		521.41 (3/2)-	
2273.80 17	6.5 4	2273.81	$(3/2, 5/2, 7/2)^+$	$0.0 7/2^+$	
2287.72 36	1.6 3	2287.8		$0.0 7/2^+$	
2298.1 10	0.5 2	2888.84	$(3/2, 5/2, 7/2)^+$	590.79 (5/2)-	
2300.1 4	3.3 7	2821.9	$(3/2, 5/2, 7/2)^+$	521.41 (3/2)-	
2305.8 ^{&} 8	1.3 2	2440.43	$(3/2^+)$	134.45 1/2-	E_{γ} : observed only by 1978Lh01.
2328.78 22	2.0 3	2356.10	$(3/2, 5/2, 7/2)^+$	27.54 (9/2)+	,
2355.81 23	3.0 3	2356.10	$(3/2, 5/2, 7/2)^+$	$0.0 7/2^+$	
^x 2365.7 8	1.7 3				
2368.0 6	2.2 7	2888.84	$(3/2, 5/2, 7/2)^+$	521.41 (3/2)-	
2373.67 17	13.0 5	2401.12	$(3/2, 5/2, 7/2)^+$	27.54 (9/2)+	
2386.66 19	5.5 4	2521.09	$(3/2, 5/2, 7/2)^+$	134.45 1/2-	
2401.06 17	10.2 5	2401.12	$(3/2, 5/2, 7/2)^+$	$0.0 7/2^+$	
2411.72 28	1.8 3	2439.42	$(3/2, 5/2, 7/2)^+$	$27.54 (9/2)^+$	
2412.1 <mark>&</mark> 7	1.7 4	2440.43	$(3/2^+)$	27.54 (9/2)+	E_{γ} : observed only by 1980Ka05.
2439.58 21	4.5 3	2439.42	$(3/2, 5/2, 7/2)^+$	$0.0 7/2^+$,
2439.8 <mark>&</mark> 7	4.6 10	2440.43	$(3/2^+)$	$0.0 7/2^+$	E_{ν} : observed only by 1980Ka05.
2457.72 35	1.6 3	2485.15	$(3/2, 5/2, 7/2)^+$	27.54 (9/2)+	,
2485.04 19	5.6 4	2485.15	$(3/2, 5/2, 7/2)^+$	$0.0 7/2^+$	
2520.91 34	1.5 3	2521.09	$(3/2, 5/2, 7/2)^+$	$0.0 7/2^+$	
2570.44 23	3.8 <i>3</i>	2597.73	$(3/2, 5/2, 7/2)^+$	$27.54 (9/2)^+$	
2597.80 35	1.8 <i>3</i>	2597.73	$(3/2, 5/2, 7/2)^+$	$0.0 7/2^+$	
2630.0 ^{&} 6	0.6 2	2658.1	$(3/2,5/2,7/2)^+$	$27.54 (9/2)^+$	E_{ν} : observed only by 1978Lh01.
2658.1 5	1.4 3	2658.1	$(3/2,5/2,7/2)^+$	$0.0 7/2^+$,
2661.99 26	3.4 3	2662.09	$(3/2,5/2,7/2)^+$	$0.0 7/2^+$	
2681.35 28	12.5 5	2708.69	$(3/2, 5/2, 7/2)^+$	27.54 (9/2)+	

From ENSDF

						103 Cd ε decay ((7.3 min))				
						$\gamma(^{103}\text{Ag})$ (continued)						
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger @}$	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	${ m J}_f^\pi$	E_{γ}^{\dagger}	$I_{\gamma}^{\dagger @}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	
2688.8 11	1.9 4	2821.9	$(3/2,5/2,7/2)^+$	134.45	$1/2^{-}$	^x 2912.8 5	0.5 2					
2707.71 23	8.0 5	2707.86	$(3/2, 5/2, 7/2)^+$	0.0	7/2+	2953.18 35	1.4 3	2980.62	$(3/2, 5/2, 7/2)^+$	27.54	$(9/2)^+$	
2708 <mark>&</mark>		2708.69	$(3/2, 5/2, 7/2)^+$	0.0	$7/2^{+}$	2980.57 32	1.9 <i>3</i>	2980.62	$(3/2, 5/2, 7/2)^+$	0.0	$7/2^{+}$	
2753.21 38	0.7 2	2888.84	$(3/2, 5/2, 7/2)^+$	134.45	$1/2^{-}$	^x 3043.4 4	1.0 3					
2768.65 35	3.3 4	2796.1	$(3/2, 5/2, 7/2)^+$	27.54	$(9/2)^+$	x3056.6 4	1.0 3					
2777.7 5	0.7 2	2778.1		0.0	$7/2^{+}$	^x 3066.0 4	1.0 3					
2795.8 6	0.6 2	2796.1	$(3/2, 5/2, 7/2)^+$	0.0	7/2+	3161.5 4	1.4 <i>3</i>	3188.8	$(3/2, 5/2, 7/2)^+$	27.54	$(9/2)^+$	
^x 2811.17 32	1.6 3					3188.5 4	1.5 <i>3</i>	3188.8	$(3/2, 5/2, 7/2)^+$	0.0	7/2+	
^x 2829.52 26	6.2 5					^x 3245.0 5	0.8 <i>3</i>					
2855.53 28	2.8 4	2855.60	$(3/2, 5/2, 7/2)^+$	0.0	7/2+							

[†] Taken from 1978Lh01, as 1980Ka05 does not give uncertainties on γ energies.

^{\ddagger} M1 was assumed for the calculation of α , unless noted otherwise when conversion data indicated that other multipolarities were possible.

[#] Only α 's \geq 1% are given.

^(a) For absolute intensity per 100 decays, multiply by 0.108 *15*. ^(b) Placement of transition in the level scheme is uncertain. ^x γ ray not placed in level scheme.

From ENSDF

 $^{103}_{47} Ag_{56}$

103 Cd ε decay (7.3 min)

 $^{103}_{47}\mathrm{Ag}_{56}$

 $^{103}_{47}\mathrm{Ag}_{56}$

103 Cd ε decay (7.3 min)

