⁷²Ge(³⁵Cl,2p2nγ) 2008Ra06

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	D. De Frenne	NDS 110, 2081 (2009)	1-Mar-2009				

E=135 MeV beam provided by ATLAS facility at Argonne. Measured E γ , I γ , $\gamma\gamma$ coin, lifetimes by DSAM using GAMMASPHERE array of 101 Compton-suppressed HPGe detectors.

¹⁰³Ag Levels

E(level) [†]	$J^{\pi \#}$	$T_{1/2}^{\ddagger}$	Comments
0.0	$7/2^{+}$		
27.54 [@] 4	$9/2^{+}$		
591.24 [@] 24	$11/2^{+}$		
851.24 [@] 24	$13/2^{+}$		
1490.7 [@] 3	15/2+		
1821.3 [@] 3	$17/2^{+}$		
2159.7 4	$(15/2^{-})$		
2572.5 4	$(15/2^{-})$		
2869.1 4	$\frac{1}{17/2^{-}}$		
3061.0 4	$(17/2^{-})$		
3121.6 ^{<i>a</i>} 4	$19/2^{-}$		
3238.9 ^b 4	$(17/2^{-})$		
3356.7 ^a 4	21/2-		
3419.7 <mark>b</mark> 5	$(19/2^{-})$		
3665.4 ^{<i>a</i>} 5	$23/2^{-}$		
3709.0 ^b 5	$(21/2^{-})$		
3991.3 ^b 4	$(23/2^{-})$		
4081.7 ^{<i>a</i>} 5	$25/2^{-}$		
4359.7 ⁰ 4	$(25/2^{-})$		
4443.6 ^{<i>a</i>} 5	27/2-		
4792.10 5	$(27/2^{-})$	0.00	
4959.2° 5	29/2	0.28 ps + 8 - 4	
51/4.9° 5	(29/2)	0.270 ps + 21 - 28	
5354.1° 5	$(2^{7}/2^{-})$	$0.267 m_{\odot} + 28.42$	E(lavel), Table with the measured lifetimes of 2008Da06 sizes this lavel as 5200.0
3488.5 5	(31/2)	0.207 ps +28-42	this is likely an error.
5608.1 ^b 6	(31/2-)	0.222 ps +14-21	
5781.9 ^{&} 5	$(29/2^{-})$		
6150.9 ^b 7	$(33/2^{-})$	0.132 ps +7-21	
6184.3 ^{&} 5	$(31/2^{-})$	0.125 ps 14	
6185.3 ^{<i>a</i>} 6	$(33/2^{-})$	0.229 ps +28-21	
6671.8 ^{&} 6	$(33/2^{-})$	0.090 ps 7	
6687.3? ^{<i>a</i>} 6			
7175.4 ^{x} 7	(35/2 ⁻)	0.083 ps 7	
7688.0 8	$(37/2^{-})$		
8257.9 ^{&} 8	$(39/2^{-})$		

[†] From least-squares fit to $E\gamma$'s by evaluator, assuming an uncertainty of 0.3 keV for each γ ray. 2008Ra06 seem to have assumed the energy of the first excited state $(J^{\pi}=9/2^+)$ at 10 keV, but in the Adopted Levels it is at 27.54 keV. Thus all the level energies

⁷²Ge(³⁵Cl,2p2nγ) 2008Ra06 (continued)

¹⁰³Ag Levels (continued)

here are about 17.5 keV higher than given in the second column of the table with transition and excitation energies of 2008Ra06.

- [‡] From Doppler-shift attenuation method (2008Ra06). The uncertainties include those from fitting procedure and side feeding intensities.
- [#] From $\gamma\gamma$ coin, γ mult.presumed band structure and measured lifetimes. Apart from parentheses for some levels in Adopted level data set, the values are the same.
- [@] Band(A): $\Delta J=1$ band based on $9/2^+$.
- & Band(B): $\Delta J=1$ band based on $(27/2^{-})$. Possible Magnetic-dipole rotational band with configuration= $\pi g_{9/2}^3 \otimes \nu (g_{7/2}h_{11/2})$.
- ^{*a*} Band(C): $\Delta J=1$ band based on 19/2⁻. Configuration: $g_{9/2}$ proton; $g_{7/2}+d_{5/2}$ and $h_{11/2}$ neutrons. Chiral partnership with band based on 17/2⁻ suggested from energy and spin matching, but TAC (Tilted Axis Cranking) model calculations do not support this interpretation. The configurations of the two bands are different. This band may satisfy some criteria of magnetic-dipole bands and/or tilted-axis rotational band.
- ^b Band(D): $\Delta J=1$ band based on (17/2⁻). Configuration: $g_{9/2}$ proton; $g_{7/2}+d_{5/2}$ and $h_{11/2}$ neutrons. Chiral partnership with band based on 17/2⁻ suggested from energy and spin matching, but TAC (Tilted Axis Cranking) model calculations do not support this interpretation. The configurations of the two bands are different. This band may satisfy some criteria of magnetic-dipole bands and/or tilted-axis rotational band.

$\gamma(^{103}{\rm Ag})$

 R_{int} in 2008Ra06 are listed here as DCO's. $R_{int}=[(I_{\gamma 1}at 35^{\circ}, 145^{\circ}; (gated with \gamma_2 at 90^{\circ})]/[I_{\gamma 1} at 90^{\circ}; gated with \gamma_2 at 35^{\circ}, 145^{\circ}.$ For gates on stretched quadrupole transitions, expected values are: ≈ 0.9 for $\Delta J=2$, quadrupole and ≈ 0.55 for $\Delta J=1$, dipole transitions.

Eγ	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	α #	Comments
27.54 4		27.54	9/2+	0.0	7/2+			E_{γ} : from Adopted Levels, gammas.
69.9	10.0 10	3121.6	$19/2^{-}$	3051.7	$(17/2^{-})$	(M1)	1.16 6	
180.8	3.4 <i>3</i>	3419.7	$(19/2^{-})$	3238.9	$(17/2^{-})$	(M1)	0.0820 12	
234.9	37 4	3356.7	$21/2^{-}$	3121.6	19/2-	M1	0.0409 6	DCO=0.57 6
252.5	2.8 3	3121.6	$19/2^{-}$	2869.1	$17/2^{-}$	M1	0.0339 5	DCO=0.55 6
260.0	100 10	851.24	$13/2^{+}$	591.24	$11/2^{+}$	M1 [†]	0.0314 6	DCO=1.0 1
282.3	3.4 <i>3</i>	3991.3	$(23/2^{-})$	3709.0	$(21/2^{-})$	(M1)	0.0254 4	DCO=0.48 6
289.4	3.8 4	3709.0	$(21/2^{-})$	3419.7	$(19/2^{-})$	(M1)	0.0238 4	DCO=0.42 6
296.6	10.0 10	2869.1	$17/2^{-}$	2572.5	$(15/2^{-})$	(M1)	0.0224 4	
309.0	34 4	3665.4	$23/2^{-}$	3356.7	$21/2^{-}$	M1	0.0201 3	DCO=0.57 6
330.5	64 7	1821.3	$17/2^{+}$	1490.7	$15/2^{+}$	M1	0.01697 24	DCO=0.62 8
358.8	1.3 1	3419.7	$(19/2^{-})$	3061.0	$(17/2^{-})$	(M1)	0.01380 20	
361.9	23.8 20	4443.6	$27/2^{-}$	4081.7	$25/2^{-}$	M1	0.01351 20	DCO=0.53 6
368.8	2.3 2	4359.7	$(25/2^{-})$	3991.3	$(23/2^{-})$	(M1)	0.01288 19	DCO=0.55 6
382.9	1.79 20	5174.9	$(29/2^{-})$	4792.1	$(27/2^{-})$	(M1) [†]	0.01173 17	DCO=0.72 10
402.4	3.7 4	6184.3	$(31/2^{-})$	5781.9	$(29/2^{-})$	(M1)	0.01037 15	DCO=0.44 6
416.2	31 <i>3</i>	4081.7	$25/2^{-}$	3665.4	$23/2^{-}$	M1		DCO=0.67 8
427.8	0.50 6	5781.9	$(29/2^{-})$	5354.1	$(27/2^{-})$	(M1)		
432.2	1.6 <i>1</i>	4792.1	$(27/2^{-})$	4359.7	$(25/2^{-})$	(M1)		DCO=0.44 6
433.2	0.87 8	5608.1	$(31/2^{-})$	5174.9	$(29/2^{-})$	(M1)		DCO=0.50 6
487.5	1.6 2	6671.8	$(33/2^{-})$	6184.3	$(31/2^{-})$	(M1)		DCO=0.42 6
502.0 [@]		6687.3?		6185.3	$(33/2^{-})$			I_{γ} : weak γ ray.
503.6	1.5 2	7175.4	$(35/2^{-})$	6671.8	$(33/2^{-})$	(M1)		DCO=0.45 6
512.6	1.4 2	7688.0	$(37/2^{-})$	7175.4	$(35/2^{-})$	(M1)		DCO=0.43 6
515.6	24.0.20	4959.2	$29/2^{-}$	4443.6	27/2-	M1 [†]		DCO=0.77 7
529.1	3.4 4	5488.3	$(31/2^{-})$	4959.2	29/2-	(M1)		DCO=0.55 6
542.8	0.70 /	6150.9	$(33/2^{-})$	5608.1	$(31/2^{-})$	(M1)		DCO=0.54 6
549.1	2.2 1	3121.6	$19/2^{-1}$	2572.5	$(15/2^{-})$	(E2)		

Continued on next page (footnotes at end of table)

72 Ge(35 Cl,2p2n γ) 2008Ra06 (continued)

$\gamma(^{103}\text{Ag})$ (continued)

E_{γ}	I_{γ}	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	Comments
563.7	200.0	591.24	$11/2^{+}$	27.54	9/2+	M1	DCO=0.69 7
569.9	0.30 5	8257.9	$(39/2^{-})$	7688.0	$(37/2^{-})$	(M1)	
635.0	0.18 1	3991.3	$(23/2^{-})$	3356.7	$21/2^{-}$	(M1)	
639.5	100 10	1490.7	$15/2^{+}$	851.24	$13/2^{+}$	M1	DCO=0.75 10
694.8	1.45 20	4359.7	$(25/2^{-})$	3665.4	$23/2^{-}$	(M1) [†]	DCO=1.30 15
697.0	4.1 4	6185.3	$(33/2^{-})$	5488.3	$(31/2^{-})$	(M1)	DCO=0.69 8
725.2	3.6 4	4081.7	$25/2^{-}$	3356.7	$21/2^{-}$	E2	DCO=0.82 9
778.1	8.7 8	4443.6	$27/2^{-}$	3665.4	$23/2^{-}$	E2	DCO=0.95 6
801.0	0.50 1	4792.1	$(27/2^{-})$	3991.3	$(23/2^{-})$	(E2) [†]	DCO=2.20 23
815.1	0.31 1	5174.9	$(29/2^{-})$	4359.7	$(25/2^{-})$	(E2)	
823.7	100 10	851.24	$13/2^+$	27.54	9/2+	E2	DCO=0.89 10
830.2	0.20 2	6184.3	(31/2)	5354.1	(27/2)	(E2) (E2)	
809.9	1.38 20	3991.3	(25/2)	5121.0	19/2	(E2)	
8//.5	5.5 5	4959.2	$\frac{29}{2}$	4081.7	25/2	(E2)	DCO=2.73
892.0	3.94	3031.7	(1/2)	2159.7	(15/2)		
899.5	100 10	1490.7	$15/2^+$ $17/2^+$	591.24	$11/2^+$ 12/2+	E2 '	DCO=1.50 11
9/0.0	100 10	1821.3	$1/2^{+}$	851.24	$13/2^{+}$	E2 (E2)	DCO=1.03 12 E , page fit lavel anarov difference -1002.0
1001.9	0.80 1	4539.7	(23/2)	5550.7	21/2	(E2)	E_{γ} : poor int, level-energy difference=1005.0.
1044.7	2.5 3	5488.3	(31/2)	4443.6	27/2	(E2)	DCO=1.76 13
1223.1	0.000	0184.3	(31/2)	4959.2	29/2	$(\mathbf{M}\mathbf{I}\mathbf{I})$ $(\mathbf{E}2)$	
1220.1	2.8 5	5254.1	(35/2)	4939.2	25/2	$(\mathbf{L}\mathbf{Z})$	
12/2.4	0.80 1	5354.1	(21/2)	4081.7	25/2	(MII)	DCO=0.6710
1300.3	38 3	3121.6	19/2-	1821.3	17/2+	El	DCO=0.84 13
1308.4	1.1 1	2159.7	(15/2)	851.24	13/2	(EI)	DCO=0.43 8
1338.3	2.7 3	5781.9	$(29/2^{-})$	4443.6	$27/2^{-}$	(M1)	DCO=0.59 5
1378.3	11.9 10	2869.1	$17/2^{-}$	1490.7	$15/2^{+}$	E1 [†]	DCO=0.96 12
1570.2	1.1 <i>I</i>	3061.0	$(17/2^{-})$	1490.7	$15/2^{+}$	(E1)	
1721.2	1.8 2	2572.5	$(15/2^{-})$	851.24	$13/2^+$	(E1)	
1748.2	0.20 2	3238.9	$(1^{-}/2^{-})$	1490.7	$15/2^+$	(E1)	

[†] DCO value corresponds to gate on $\Delta J=1$, dipole transition.

[±] Intraband $\Delta J=1$ transitions considered as M1; $\Delta J=2$ intraband transitions considered as E2. [#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[@] Placement of transition in the level scheme is uncertain.

¹⁰³₄₇Ag₅₆

4

 $^{103}_{\ 47} Ag_{56}$

⁷²Ge(³⁵Cl,2p2nγ) 2008Ra06

Band(A): $\Delta J=1$ band based on $9/2^+$

 $^{103}_{\ 47} Ag_{56}$