Adopted Levels, Gammas

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	D. De Frenne	NDS 110,1745 (2009)	31-Dec-2008

 $Q(\beta^{-})=4717 \ 9$; $S(n)=6494 \ 12$; $S(p)=13816 \ 12$; $Q(\alpha)=-7593 \ 10 \ 2012Wa38$ Note: Current evaluation has used the following Q record 4.61E3 $\ 3 \ 6356 \ 591.412E4 \ 11-752E1 \ 6 \ 2003Au03$. $Q(\beta^{-})(g.s.)=4719 \ keV \ 15 \ en \ Q(\beta^{-})(isomer)=4626 \ keV \ 23 \ (2007Ri01) \ 2007Ri01 \ supersedes \ 2006Ha23$. Other experimental data: Fission yields: 1987GuZX.

¹⁰²Zr Levels

Band from 2008Li45.

Cross Reference (XREF) Flags

			A 10 B 10	${}^{03}Y \beta^{-} n \text{ decay} \qquad E \qquad {}^{238}U(\alpha, F\gamma)$ ${}^{02}Y \beta^{-} \text{ decay} (0.36 \text{ s}) \qquad F \qquad {}^{248}Cm \text{ SF decay}$
			C D 2	02 Y β^{-} decay (0.298 s) G 232 Cf SF decay 35 U(n,F)
E(level) [‡]	$J^{\pi \dagger}$	$T_{1/2}^{\#}$	XREF	Comments
0 [@]	0+	2.9 s 2	ABCDEFG	$\%\beta^{-}=100$ < $r^{2}>^{1/2}=4.5690$ fm 218 (2004An14, evaluation). T _{1/2} : from 1976Ah06; half-life was measured by following the growth and decay of the niobium daughter in zirconium samples.
151.78 [@] 11	2+	1.8 ns <i>4</i>	BCDEFG	$β_2$ = 0.427 44(2001Ra27) μ=+0.44 10 J ^π : 151.9γ is (E2) as seen in ²³⁵ U(n,F). T _{1/2} : From (2001Ra27). Others: 1.91 ns 25 from ²⁵² Cf, ²⁵⁴ Cf SF decay by recoil-distance Doppler-shift method. 3.0 ns from γγγ(t) in ²⁵² Cf(SF)(2005Fo17)and 2.76 ns 36 from the technique of time-integral perturbed angular correlations using ^{252Cf} SF and ²⁴⁸ Cu SF sources (2004Sm04). μ: From g=+0.22 5 2004Sm04, 2005Sm08 with the technique of time-integral perturbed angular correlations using ^{252Cf} SF and ²⁴⁸ C SE decays
478.28 [@] 16 894.79 21	4 ⁺ (0 ⁺)		BCDEFG C	J^{π} : γ decay to 2 ⁺ but not to 4 ⁺ suggests (0 ⁺) for this level. (1 ⁺) cannot be excluded but 0 ⁺ favored from systematics.
964.78 [@] 24 1036.3 ^f 4 1159.50 22 1211.05 <i>13</i>	6 ⁺ (2 ⁺) (2 ⁺)		B DEFG FG C BC	J^{π} : based on systematics: from γ decay to 0^+ and 2^+ .
$ \begin{array}{r} 1242.3^{f} \ 3 \\ 1386.7^{d} \ 6 \\ 1538.1^{f} \ 5 \\ \end{array} $	(3^+) (4^+) (4^+)		B EFG FG	
1594.9 [@] 6 1652.8 ^e 5 1661.8 ^a 4 1793.3 7 1821.1 ^{&} 4	8 ⁺ (6 ⁺) (5 ⁻) (3,4) (4 ⁻)	1.39 ps <i>21</i>	EFG G E G FG EFG	
1022.3! ð			Б	

				¹⁰² Z	Zr Levels	(continued)	
E(level) [‡]	$J^{\pi \dagger}$	T _{1/2} #	XREF	E(level) [‡]	Jπ†	T _{1/2} #	XREF
1829.4 ^d 6	(6+)		G	3134.2 ^b	(12+)		G
1920.7 6				3183.6 [°] 6	(8)		G
1932.6 ^b	(8^{+})		Е	3212.3 [@] 9	12^{+}	0.28 ps 4	EG
1980.8 ^{<i>a</i>} 6	(5 ⁻)		B EFG	3293.0 ^a	(10^{-})		E
2092.8 ^{<i>a</i>} 6	(7 ⁻)		EG	3371.0 ^{<i>a</i>}	(11^{-})		EG
2175.0 ^{&} 9	(6 ⁻)		EFG	3475.8 [°] 6	(9)		G
2184.0 5	(8^{+})		G	3567.5 ^e 6	(12^{+})		G
2351.5 [@] 8	10^{+}	0.53 ps 10	EFG	3802.0 [°] 6	(10)		G
2373.3 ^d 4	(8 ⁺)		FG	3925.7 <mark>b</mark>	(14^{+})		G
2403.0 <mark>&</mark> 8	(7 ⁻)		EFG	4153.4 [@]	14+		EG
2465.8 ^b 5	(10^{+})		G	4162.2 ^C 6	(11)		G
2663.9 ^a 5	(9 ⁻)		EG	4205.2 ^{<i>a</i>}	(13 ⁻)		EG
2665.8 <mark>&</mark> 8	(8-)		EFG	4828.5 ^b	(16 ⁺)		Е
2825.8 ^e 5	(10^{+})		G	5160.7 <mark>&</mark>	(15 ⁻)		Е
2924.7 [°] 6	(7)		FG	5169.0 [@]	16+		EG
2961.4 <mark>&</mark> 9	(9-)		EFG	6267.1 [@]	18+		Е
3033.3 ^d 5	(10^{+})		G	7451.7 [@]	20^{+}		E

t	Assignment is based on assumption of observed band structure i	n ²⁵² Cf, ²⁴⁸ Cm	SF decay	and $^{238}U(\alpha,F\gamma)$,	systematics a	and γ
	decay pattern.					

[‡] Least-squares procedure was used to calculate level energies based on adopted gammas.

[#] $T_{1/2}$ from short-lived isomers from Doppler-profile method (1996Sm04), unless specified otherwise.

- @ Band(A): g.s. band.
- [&] Band(B): *v*5/2[532]⊗*v*3/2[411].
- ^{*a*} Band(C): *v*5/2[532]⊗5/2[413].
- ^b Band(D): Band based on (8⁺).

^c Band(E): $\Delta J=1$ band based on 7. Possible configurations= $v9/2[404] \otimes v5/2[532]$ or $v9/2[514] \otimes v5/2[413]$ for 7⁻; $v9/2[404] \otimes v5/2[413]$ or $v9/2[514] \otimes v5/2[532]$ for 7⁺. ^{*d*} Band(F): $v3/2[411] \otimes v5/2[413]$.

- ^e Band(G): v9/2[404]&v3/2[411]. Alternate configuration=v9/2[514]&v3/2[541].

^f Band(H): Band based on (2⁺).

$\gamma(^{102}\text{Zr})$

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	α#	Comments
151.78	2^{+}	151.75 8	100	0	$\overline{0^+}$	(E2)	0.243 4	B(E2)(W.u.)=105 14
478.28	4^{+}	326.48 21	100	151.78	2^{+}			
894.79	(0^+)	743.01 18	100	151.78	2^{+}			
964.78	6+	486.54 19	100	478.28	4+			
1036.3	(2^{+})	884.5 5		151.78	2^{+}			
		1036.4 5		0	0^{+}			
1159.50		1159.49 22	100	0	0^{+}			
1211.05	(2^{+})	1059.21 18	73 8	151.78	2^{+}			
	. ,	1211.08 16	100 10	0	0^{+}			
1242.3	(3^{+})	764.0 5		478.28	4+			
	(-)	1090.8 4		151.78	2^{+}			
1386.7	(4+)	908.4 5	100 16	478.28	4+			A ₂ =-0.073 27, A ₄ =+0.149 40 for 908.0-326.5 $\gamma\gamma$ cascade consistent with 4->4->2 cascade with mult=O for 4 -> 4 transition

mult=Q for $4 \rightarrow 4$ transition.

Continued on next page (footnotes at end of table)

$\gamma(^{102}\text{Zr})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^{π}	Comments
1386.7	(4^{+})	1234.5	43 14	151.78	2+	
1538.1	(4^+)	1059.7 5	100	478.28	4+	
1594.9	8+	630.1 5	100	964.78	6+	
1652.8	(6^{+})	687.8	33 11	964.78	6+	
		1174.4 5	100 15	478.28	4+	
1661.8	(5^{-})	275 [@] 10		1386.7	(4^{+})	
	(-)	697.2 5	100	964.78	6+	
		1183.3 5	23	478.28	4+	
1793.3	(3,4)	551.1	5.4 19	1242.3	(3^{+})	
		757.0 5	100 16	1036.3	(2^{+})	
1821.1	(4^{-})	27.2 [@] 10		1793.3	(3,4)	
		282.8 5	100	1538.1	(4^{+})	
		579.0 4	84	1242.3	(3+)	
		1342.5 5	3.6	478.28	4+	
1822.5?		579.4 5	100	1242.3	(3^{+})	
1829.4	(6^{+})	864.6 5	100	964.78	6+	
1920.7		1442.4 5	100	478.28	4+	
1932.6	(8^{+})	968.7 [‡]	100	964.78	6+	
1980.8	(5 ⁻)	159.7 4	100	1821.1	(4 ⁻)	
2092.8	(7^{-})	431.0 5	100	1661.8	(5 ⁻)	
		498.1 10		1594.9	8+	
		1126.8		964.78	6+	E_{γ} : Only observed in ²³⁸ U(α ,F γ).
2175.0	(6 ⁻)	193.7 ^{@} 5		1980.8	(5 ⁻)	
2184.0	(8^{+})	531.8 10	100 5	1652.8	(6^{+})	
	101	1219.6 5	55 16	964.78	6+	
2351.5	10+	756.6 5	100	1594.9	8+	
2373.3	(81)	544.0	100 66	1829.4	(6')	
		1/1.9	4//5	1594.9	8' 6+	
2402.0	(7^{-})	228.0.5	32 63	904.78	(6^{-})	
2403.0	(7)	220.0 J 122 2 5	100 15	1080.8	(0^{-})	
2465.8	(10^{+})	533.5	100 13	1932.6	(3^{+})	
2105.0	(10)	870.4	41 13	1594.9	8+	
2663.9	(9^{-})	569.4	100	2092.8	(7^{-})	
2665.8	(8-)	262.6 5	100 28	2403.0	(7^{-})	
		490.8 5	72 22	2175.0	(6 ⁻)	
2825.8	(10^{+})	641.3	100 15	2184.0	(8^{+})	
		1230.4	30 10	1594.9	8+	
2924.7	(7)	1959.9 5	100	964.78	6+	
2961.4	(9 ⁻)	296.4 5	90 30	2665.8	(8-)	
	(10)	559.0 5	100 30	2403.0	(7^{-})	
3033.3	(10^+)	660.0	100	2373.3	(8^+)	
3134.2	(12^{+})	669.3	100	2465.8	(10^{+})	
2212.2	(8) 12 ⁺	237.2	100	2924.7	(7) 10 ⁺	
3212.5	(10^{-})	300.0 J	100	2061.4	(0^{-})	
5293.0	(10)	531.3°		2901.4	(9)	
3371.0	(11^{-})	020.4T 706.0	100	2003.9	(9)	
3475 8	(11)	202.9	100 33	2005.9 3183.6	(8)	
5775.0		5494	67 22	2924 7	(0)	
3567 5	(12^{+})	741 7	100	2825.8	(10^+)	
3802.0	(10)	326.2	100 25	3475.8	(9)	
	. /	618.4 [@]	25 8	3183.6	(8)	

Continued on next page (footnotes at end of table)

$\gamma(^{102}\text{Zr})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_f = J_f^{\pi}$	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_f = J_f^{\pi}$
3925.7	(14^{+})	791.5	100	3134.2 (12+) 4828.5	(16 ⁺)	902.8 [‡]	100	3925.7 (14 ⁺)
4153.4 4162.2	14 ⁺ (11)	941.4 360.4	100 100 <i>35</i>	$\begin{array}{ccc} 3212.3 & 12^+ \\ 3802.0 & (10) \end{array}$	5160.7 5169.0	(15 ⁻) 16 ⁺	955.5 [‡] 1015.6	100 100	4205.2 (13 ⁻) 4153.4 14 ⁺
		686.2	50 15	3475.8 (9)	6267.1	18^{+}	1098.1‡	100	5169.0 16+
4205.2	(13 ⁻)	833.8	100	3371.0 (11-) 7451.7	20^{+}	1184.6 [‡]	100	6267.1 18+

[†] Weighted averages of gammas from ²⁵²Cf,²⁴²Pu SF decay, and ¹⁰²Y decays if possible. Otherwise from ²⁵²Cf,²⁴²Pu SF decay. [‡] Only observed in ²³⁸U(α ,F γ).

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[@] Placement of transition in the level scheme is uncertain.

 $^{102}_{40}\mathrm{Zr}_{62}$

6

Adopted Levels, Gammas

 $^{102}_{40}{
m Zr}_{62}$

(6+)	1652.8

Band(H): Band based on (2^+)

(4⁺) 1538.1

(3+) 1242.3

(2+) 1036.3

 $^{102}_{40}{
m Zr}_{62}$