Adopted Levels, Gammas

		History					
	Туре	Author	Citation	Literature Cuto	ff Date		
	Full Evaluation	D. De Frenne	NDS 110,1745 (2009)	31-Dec-20	08		
$Q(\beta^{-})=10420 \ 10; \ S(n)=4178 \ 9$; S(p)=1.290×10	⁴ 8; $Q(\alpha) = -9280$) 6 2012Wa38				
Note: Current evaluation has us	sed the following	Q record 9850	70505e ⁺ 1 <i>131</i> .377E4	15-1.001E410	2003Au03.		

¹⁰²Y Levels

From 2007Ch07: μ =+2.34 5 for J^{π} =(2) and μ =+2.68 *l* for J^{π} =(3). The spectroscopic electric quadrupole moment Q(s)=+1.17 13 for $J^{\pi}=(2)$ and Q(s)=+1.36 16 for $J^{\pi}=(3)$.

Cross Reference (XREF) Flags

 102 Sr β^- decay Α

E(level) [†]	Jπ‡	T _{1/2}	XREF	Comments
0.0+x 0.0+y	HIGH J	0.36 s 4 0.298 s 9	A	$%\beta^-=100; %\beta^-n=4.9 12$ %β ⁻ n: weighted average of 6.0 17 (1986ReZS) and 4.0 15 (1996Me09). Should be considered as a combined value for both isomers. E(level): from systematics in lighter Y isotopes, two ¹⁰² Y isomers are expected. Experimental evidence for the existence of two isomers is based on a different I(152γ)/I(326γ) ratio obtained in the studies of 1983Sh13 and 1988HiZQ. J ^π probably high because production method via ²³⁵ U(n,F) favors high-spin isomer. Th high spin isomer is directly produced in the fission reaction. See also general comment. T _{1/2} : from 1983Sh13, γ(t). Contamination of T _{1/2} by low-spin isomer cannot be excluded. Others: 0.27 s 7 (1981HiZX), 0.5 s 1, β ⁻ delayed neutron decay (1980KrZY). 0.44 s 6 (1986ReZS). 0.9 s 3 (1974GrZN) is probably incorrect. %β ⁻ =100; %β ⁻ n=4.9 12 %β ⁻ n: weighted average of 6.0 17 (1986ReZS) and 4.0 15 (1996Me09) should be considered as a combined value for both isomers. E(level): the assignment based on mass-separated samples of A=102 produced in ²³⁵ U(n,F) with ¹⁰² Sr as major activity. As a consequence primarily the decay of the low-spin isomer of ¹⁰² Y is fed in the β ⁻ decay of ¹⁰² Sr and as such indirectly produced. T _{1/2} : Weighted average of 0.30 s 6 (1991Hi02) and 0.29 s 2 (1996Me09). Slight contamination of T _{1/2} by high-spin isomer cannot be excluded. Other: 0.44 s 6 (1986ReZS).
93.80+y 6			A A	
200.25+y 9 243.85+y 6	1+		A	
311.70+v 9	1		A	
497.81+y 10			Α	
645.4+y? 4			Α	
898.63+y 22			Α	
1347.92+y <i>14</i>	1^{+}		Α	
1689.58+y 15	1+		Α	

[†] From ¹⁰²Sr β^- decay. As $J^{\pi}=0^+$ for ¹⁰²Sr g.s., very likely the lowest level observed in the β^- decay of ¹⁰²Sr is the low-spin isomer of ¹⁰²Y. The energies of the observed levels are referred to the excitation energy of the low-spin ¹⁰²Y isomer However in a recent paper of (2007Ch07) 2 states with J=(2) and (3) are mentioned. No high spin state mentioned. So new experiments

Adopted Levels, Gammas (continued)

102Y Levels (continued)

 $\gamma(^{102}Y)$

needed to solve that problem of isomerism. That means that the results given here should be treated with great caution. [‡] Based on log *ft* in ¹⁰²Sr β -decay which indicates allowed β transition. $J^{\pi}=1^+$ from log *ft*<4.5.

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	J_f^{π}
93.80+y		93.89 8	100	0.0+y	LOW J
208.23+y		114.46 15	32 <i>3</i>	93.80+y	
-		208.16 13	100 7	0.0+y	LOW J
243.85+y	1^{+}	35.58 18	1.0 4	208.23+y	
		150.15 10	34.0 18	93.80+y	
		243.80 8	100 5	0.0+y	LOW J
311.70+y		67.89 14	100 6	243.85+y	1^{+}
		103.40 20	12.1 20	208.23+y	
		217.92 15	47 4	93.80+y	
		311.60 20	18 <i>3</i>	0.0+y	LOW J
497.81+y		186.15 15	29.4 29	311.70+y	
		253.95 15	100 6	243.85+y	1+
		404.20 20	4.6 21	93.80+y	
		498.4 6	74	0.0+y	LOW J
645.4+y?		437.2 <i>3</i>	100	208.23+y	
898.63+y		655.1 <i>3</i>	95 21	243.85+y	1^{+}
		804.5 <i>3</i>	100 24	93.80+y	
1347.92+y	1^{+}	850.40 20	35 6	497.81+y	
		1036.00 20	74 9	311.70+y	
		1104.00 20	100 11	243.85+y	1+
1689.58+y	1^{+}	1191.80 20	100 12	497.81+y	
		1378.1 <i>3</i>	38 10	311.70+y	
		1445.5 <i>3</i>	36 8	243.85+y	1+
		1689.4 4	18 6	0.0+y	LOW J

[†] From 102 Sr β^- decay.

 $^{102}_{\ 39} Y_{63}$