$^{100}\mathbf{Mo(^{3}He,p),}^{104}\mathbf{Ru(d,}\alpha)$ 1982De03

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	D. De Frenne	NDS 110, 1745 (2009)	31-Dec-2008

E(³He)=25 MeV; measured: σ (E(p), θ), θ =5° to 40°, FWHM=20 to 40 keV.

E(d)=20 MeV; measured: $E\alpha$ for θ =15°, FWHM=20 keV. Split-pole spectrograph, enriched targets, DWBA-analysis. Deduced: $Q(^{3}\text{He,p})=6054\pm20 \text{ keV}, Q(d,a)=7180\pm10 \text{ keV}.$

¹⁰²Tc Levels

E(level) [‡]	$J^{\pi \dagger}$	_L_	Comments
0.0	(1^+)	(0+2)	
20			J^{π} : from relative excitation probability in (³ He,p) and (d, α), a high spin was proposed.
34?			J^{π} : from relative excitation probability in (³ He,p) and (d, α), a high spin was proposed.
174			
195			
213			
248			
264 298	(3 ⁺)	(2+4)	
315	(3)	(2+4)	
357	(1^+)	(0+2)	
393	. ,	, ,	
416	(2^{-})	(1+3)	
443 [#]			
472			
509			J^{π} : see remark for 526 level.
526			J^{π} : the angular distribution of the p-group, corresponding with the unresolved 509 and 526 levels, is consistent with L=(4+6), J^{π} =(5 ⁺).
573			
618			
637			
689 [#]			
727 <mark>#</mark>			
868			Unresolved multiplet.

[†] From L-transfer in ¹⁰⁰Mo(³He,p). † Uncertainty 10 to 15 keV.

[#] Possible doublet.