¹⁰²Rh ε decay (3.742 y) **1969Ge02,1970Si13**

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	D. De Frenne	NDS 110, 1745 (2009)	31-Dec-2008

Parent: ¹⁰²Rh: E=140; J^{π}=6⁽⁺⁾; T_{1/2}=3.742 y 10; Q(ε)=2323 5; % ε +% β ⁺ decay=100.0 Some γ -rays, observed by 1970Hu02 only, are summation peaks and therefore, have been omitted. Because of the many close-lying doublets, the internal conversion data of 1968Ad02 and 1961Hi06 are not included. Coincidence measurements by 1969Ko24 and 1970Ta03 are summarized on the decay scheme. Others: 1965Ro09, 1971Fr12.

¹⁰²Ru Levels

E(level) [‡]	$J^{\pi \dagger}$	Comments							
0	0^{+}								
475.07 4	2^{+}								
1103.14 5	2+	J^{π} : (628)(475)(θ) is consistent with J(D+Q)2(Q)0 for J(1103 level)=2 and δ (628 γ)=60 20. Not consistent with J=0,1,3,4 for any δ (1970Si13).							
1106.36 6	4+	-							
1521.67 7	3+	J^{π} : (1049)(475)(θ) is consistent with J(D+Q)2(Q)0 for J(1521 level)=3 and $\delta(1047\gamma)$ =-7.0 δ . Not consistent with J=1 or 2 for any δ . (419)(1103)(θ) is consistent with J(D+Q)2(Q)0 J(1521 level)=3 and $\delta(419\gamma)$ =-7.2 <i>I</i> . Not consistent with J=1 or 2 for any δ (1970Si13).							
1798.76 14	4^{+}								
1873.22 8 2219.17 7	6+ 5+	J^{π} : J=5 deduced by 1970Si13 from triple cascade angular correlation disagrees with adopted value. J^{π} : $\gamma\gamma(\theta)$ data are consistent with J=3 or 5, not consistent with J=4 (1970Si13).							

[†] From Adopted Levels.

[‡] From a least-squares procedure using gammas given in the data set.

 ε, β^+ radiations

E(decay)	E(level)	I ε^{\ddagger}	Log ft	$I(\varepsilon + \beta^+)^{\ddagger}$		Comments
(244 5)	2219.17	67 3	6.21 8	67 3	εK=	0.813 6; εL = 0.150 5; εM += 0.0370 12
(590 5)	1873.22	35 2	7.91 3	35 2	$\varepsilon K=$	0.8594; EL= 0.11363 14; EM+= 0.02700 4
(664 5)	1798.76	0.8 4	9.69 22	0.8 4	$\varepsilon K=$	0.8609; ε L= 0.1124; ε M+= 0.02666 3
(1357 [#] 5)	1106.36	≤4 [†]	≥9.7	≤4	$\varepsilon K=$	0.8657; ε L= 0.1083; ε M+= 0.02555

[†] Only upper limit can be given, because of uncertainties in γ -intensities.

[‡] Absolute intensity per 100 decays.

[#] Existence of this branch is questionable.

 $\gamma(^{102}\text{Ru})$

I γ normalization: Normalization to absolute γ -intensities is based on assumption that there is no direct β^- feeding to the ¹⁰²Ru g.s.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger}\&$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	δ#	Comments
75.6 ^{@a} 5	0.21 9	1873.22	6+	1798.76 4+			
345.89 12	0.87 10	2219.17	5+	1873.22 6+			
415.25 15	2.1 3	1521.67	3+	1106.36 4+			
418.52 18	9.4 [‡] 10	1521.67	3+	1103.14 2+	E2+M1	-7.2 10	
420.4 2	3.2 3	2219.17	5+	1798.76 4+			Mult.: α (K)exp=5.8×10 ⁻³ 14 (1993Fa11).

Continued on next page (footnotes at end of table)

				KII E deca	y (3.742 y) 190	96602,1970511	5 (continued)
$\gamma(^{102}\text{Ru})$ (continued)							
E_{γ}^{\dagger}	I_{γ}^{\dagger} &	E _i (level)	\mathbf{J}_i^{π}	$E_f = J_f^{\pi}$	Mult. [#]	δ#	Comments
475.06 4	95 4	475.07	2^{+}	$0 0^+$			
628.05 5	8.3 4	1103.14	2+	475.07 2+	E2(+M1)+E0	-60 20	Mult.: from α (K)exp=2.58×10 ⁻³ 11 (1993Fa11).
631.29 5	56 2	1106.36	4+	475.07 2+	E2		Mult.: from α (K)exp=2.43×10 ⁻³ 10 (1993Fa11).
692.4 2	1.6 2	1798.76	4^{+}	1106.36 4+			
695.6 <i>3</i>	2.9 4	1798.76	4^{+}	1103.14 2+			
697.49 8	44 2	2219.17	5+	1521.67 3+	E2		
766.84 6	34 2	1873.22	6^{+}	1106.36 4+			
1046.59 7	34 2	1521.67	3+	475.07 2+	E2+M1	-5.7 3	δ : from 1989Hi12. other: -7.0 6 (1970Si13).
1103.16 6	4.6 3	1103.14	2+	0 0+	E2		Mult.: from α (K)exp=6.27×10 ⁻⁴ 30 (1993Fa11).
1112.84 7	19 <i>1</i>	2219.17	5+	1106.36 4+	E2+M1	-1.1 +6-9	
1323.6 5	0.46 8	1798.76	4+	475.07 2+			

102 **Ph** \circ does (3.742 y)1060Ce02 1070Si13 (continued)

[†] γ -ray energies and intensities are from 1969Ge02, unless noted otherwise. [‡] Uncertainty given by the evaluator. The value given in the paper seems to be a misprint. [#] γ -multipolarities and mixing ratios are from $\gamma\gamma(\theta)$ results of 1970Si13, unless noted otherwise. [@] Observed by 1969Ko24 only. [&] Absolute intensity per 100 decays. [@] Discurrent of transition in the band otherwise is uncertain.

^{*a*} Placement of transition in the level scheme is uncertain.

¹⁰²Rh ε decay (3.742 y) 1969Ge02,1970Si13

