$(HI,xn\gamma)$

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	D. De Frenne	NDS 110, 1745 (2009)	31-Dec-2008

1997Pe25 (also 1996Pe13): ⁵⁸Ni(⁵⁰Cr, α 2py) E=261 MeV. Measured Ey, Iy, $\gamma\gamma$, and $\gamma\gamma(\theta)$ using the NORDBALL Ge detector array in conjunction with 11 liquid scintillator detectors, a silicon ball comprised of 21 silicon detectors, and BaF2 crystals as a time reference for the events in NORDBALL.

2001Li24: ⁵⁸Ni(⁵⁰Cr, α 2p γ) E=205 MeV. Measured E γ , I γ , $\gamma\gamma$, and lifetimes using the GASP array consisting of 40 Compton-suppressed Ge detectors. Lifetime measurements were determined using recoil distance Doppler shift technique.

2007Bo17: 92 Mo(12 C,2n γ).E=41 MeV. Measured E γ , $\gamma\gamma$, lifetimes using Euroball cluster detector of seven Ge detectors at 0° relative to the beam axis, and 5 HPGe detectors at a polar angle of 143°. Target 99% enriched with ⁹²Mo. Shell-Model calculations. A recoil distance Doppler shift (RDDS) experiment was performed with the Cologne coincidence plunger device in order to obtain lifetimes of low-lying states. Lifetimes were obtained using the differential decay curve method (DDCM) for $\gamma\gamma$ coincidences. 1981TrZZ: 92 Mo(12 C,2n γ), E(12 C)=44-65 MeV.

1982Tr04: ¹⁰²Pd(³He,3ny), E(³He)=25-40 MeV; ⁹²Mo(¹²C,2ny), E(¹²C)=44-65 MeV. Measured: Ey, $\gamma\gamma(t)$, $\gamma(\theta)$, T_{1/2}. Deduced ¹⁰²Cd levels, J^{π} , mult. 1992A117: ⁴⁸Ti(⁵⁸Ni,2n2p), E(⁵⁸Ni)=231 MeV. Measured: E γ , I γ , pn γ , $\gamma\gamma\gamma$, n $\gamma\gamma$. Deduced: ¹⁰²Cd levels, J^{π} .

1996Ra23: ⁵⁰Cr(⁵⁶Fe,2p2n γ), E(⁵⁶Fe)=195 MeV. Isotope identification by recoil separator. Measured: E γ , I γ , $\gamma\gamma$. Deduced: ¹⁰²Cd levels.

Unless noted otherwise, all γ data given here are from 1997Pe25 and/or 2001Li24.

102Cd Levels

All band information from 1997Pe25 and 2001Li24.

E(level) [@]	$J^{\pi \dagger}$	T _{1/2} ‡#	Comments
0.0&	0^{+}		
776.71 ^{&} 3	2+	3.5 ps 6	$T_{1/2}$: from RDDS method (2007Bo17). $T_{1/2}$: Other: 5.8 ns<2001Li24.
1637.81 ^{&} 6	4+	<5.6 ps	
1649.3?	(0^{+})		E(level): Only observed by 1996Ra23.
2230.94 ^{&} 8	6+	19.4 ps 14	
2482.6?	(2^{+})		E(level): Only observed by 1996Ra23.
2561.41 8	6+		
2676.78 ⁰ 15	(6^{+})		
2718.84 10	8+	39 ns <i>3</i>	$T_{1/2}$: 2001Li24 quote from 1992Al17. Also 38.8 ns 28 2007Bo17).
3052.97 2 9	8+	3.1 ps 7	
3187.49? ^b 19			
3577.67 11	8+		
3810.44 14	(9+)		
3908.65 ^{&} 10	10^{+}	1.2 ps 4	
4008.03 10	10^{+}	0.62 ps 14	
4036.50? ⁰ 20			
4277.15 ^c 10	11+	1.04 ps 14	
4349.78 ^{<i>a</i>} 11	9(-)		
4518.27° 10	12+	1.73 ps <i>14</i>	
4/36.5/15	(13)		
4900.35? 13	(12)		
4988.97? 20	11(-)		
5190./5? ^a 11	11()	0.28 mg 7	
5508.//° 11	15	0.28 ps /	

Continued on next page (footnotes at end of table)

102Cd Levels (continued)

E(level) [@]	J^{π^+}	T _{1/2} ‡#	Comments
5407.21? ^b 21			
5769.24 11	14		
5926.23 ^c 11	14^{+}	1.52 ps 14	$T_{1/2}$: effective lifetime.
6069.71? ^b 19	(12)		
6080.65 ^a 11	13(-)		
6287.11? <i>19</i>	(15)		
6323.54 13	13(-)		
6563.18 <i>13</i>	$14^{(-)}$		
6712.38? 24	(16)		
6746.16 ^b 15	$14^{(-)}$	>5.5 ps	
6773.21 ^c 14	15		
6827.49 12	14		
7011.10 ^{<i>a</i>} 12	15(-)		
7261.96 13	15		
7332.00° 14	10		
7788.93? 18	$16^{(-)}$	>5.5 ps	
/943.00 15	$10 \\ 17(-)$. 1.05	
8099.00° 13 8267 42 C 21	17	>1.25 ps	
8508 34 18	17		
0000.04 10 0015 200 22	10(-)	1 80 mg 14	Turre affaativa lifatima
8043.301 23 8043.60a 18	10^{-1}	1.00 ps 14	$1_{1/2}$. encenve metune.
0742.09 10 0733 / 3a 21	10(-)	$^{1.23}$ ps $^{1.23}$ ps $^{1.23}$	Tue: effective lifetime
$10512.79^{b}2$	(20)	1.59 ps 14	$1_{1/2}$. encenve method.
10313.// 3	(20)		

[†] From 1997Pe25 and 2001Li24 based on R values from $\gamma\gamma(\theta)$, a_{22} a_{44} and observed band structure. Numerical values are the same as the adopted ones.

[‡] Unless noted otherwise, from differential decay method (2001Li24).

[#] For some levels the effective lifetime was obtained. This half-life is obtained assuming 100% side-feeding into the top of the band via a cascade of transitions with the same moment of inertia as the in-band transitions. The highest γ ray for which a line shape was observed was then fitted and the extracted life time is called effective lifetime. This lifetime was used as input parameter to extract the lifetimes of the states lower in the cascade(see also 2005Si23).

^(a) From least-squares fit to $E\gamma$'s (by evaluator). The uncertainties assigned by 1997Pe25 give a poor fit with about 20 transitions outside 3 or more standard deviations. The evaluator has adjusted $\Delta(E\gamma)$'s as follows: minimum $\Delta(E\gamma)=0.05$ keV for $I\gamma>20$, 0.10 keV for $10<I\gamma<20$, and 0.15 keV for $1<I\gamma<10$. This choice gives an acceptable fit.

& Band(A): g.s. band.

^{*a*} Band(B): band based on $9^{(-)}$.

^b Band(C): Band based on 6⁺. Ordering of the 1081-952-849-511 cascade is not certain.

^c Band(D): Band based on 11⁽⁺⁾ continuation of g.s. band.

 $\gamma(^{102}\mathrm{Cd})$

R=I $\gamma(\theta=143^{\circ})/I\gamma[(\theta=79^{\circ}) \text{ or } (\theta=101^{\circ})]$ values from 1997Pe25.

$\gamma(^{102}Cd)$ (continued)

E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	Comments
99.40 <i>4</i>	3.6 2	4008.03	10^{+}	3908.65	10^{+}	M1+E2	R=1.62 11.
157.22 5	9.5 <i>3</i>	2718.84	8+	2561.41	6+	E2	B(E2)(W.u.)=3.1 3 R=1.26 3.
183.42 4	6.9 2	7011.10	$15^{(-)}$	6827.49	14		R=0.98 13.
197.59 4	5.6 2	4008.03	10^{+}	3810.44	(9 ⁺)	M1+E2	R=1.32 10.
218.46 [@] 4	3.1 <i>I</i>	4736.57	(13)	4518.27	12^{+}	M1+E2	R=0.80 4.
239.24 [@] 7	1.3 1	6563.18	$14^{(-)}$	6323.54	13(-)	M1+E2	R=0.84 5.
241.12 3	88 <i>3</i>	4518.27	12+	4277.15	11+	M1	Mult.: Other: d (1997Pe25). R=0.75 <i>I</i> .
242 93 4	863	6323 54	13(-)	6080 65	13(-)	$M1\pm F2$	$A_{22} = -0.104, a_{44} = -0.074, F0I = -0.2512.$ R-1 14 8
242.93 4	692	6827.49	13	6563.18	$14^{(-)}$	D	R = 0.75.3
269.11 3	58.1 18	4277.15	11+	4008.03	10^{+}	D	R=0.79 1.
							A_{22} =+0.06 4; a_{44} =-0.27 5; Pol=+0.28 12. Mult.: ΔJ =0,-2 (1988Tr04).
290.74 3	11.5 4	9233.43	19 ⁽⁻⁾	8942.69	18 ⁽⁻⁾	M1+E2	Mult.: Other: d (1997Pe25). R=0.52 2.
330.51 5	3.5 2	2561.41	6+	2230.94	6+	M1+E2	R=1.26 9.
360.88 [@] 4	4.9 2	6287.11?	(15)	5926.23	14^{+}	D	R=0.82 5.
368.51 <i>3</i>	45.4 14	4277.15	11+	3908.65	10+	M1	R=0.80 2. A ₂₂ =-0.21 8; a ₄₄ =-0.02 10; Pol=-0.35 10.
418.23 [†] 5	2.3 1	5407.21?		4988.97?			
422.70 5	4.2 2	6746.16	14 ⁽⁻⁾	6323.54	13 ⁽⁻⁾	D	B(E1)(W.u.)<0.00023 R=0.78 <i>10</i> .
425.27 [@] 4	5.2 2	6712.38?	(16)	6287.11?	(15)	D	R=0.83 5.
433.92 [@] 6	2.4 1	8942.69	$18^{(-)}$	8508.34	17		
435.02 4	5.9 <i>3</i>	7261.96	15	6827.49	14		E_{γ} : 434.47 from level energy difference.
460.43 4	10.4 4	5769.24	14	5308.77	13+	D	R=0.66 3.
487.43 4	6.8 <i>3</i>	2718.84	8+	2230.94	6+	E2	B(E2)(W.u.)=0.0078 8 R=1.16 4.
							$A_{22} = +0.094$; $a_{44} = +0.033$; $Pol = -0.060$.
492.1	< 3	3052.97	8+	2561 41	6+		F_{22} , F_{22} , F_{44} and for normality for the multiplet.
504.20 4	6.6.3	6827.49	14	6323.54	$13^{(-)}$	D	R=0.67.5.
$510.70^{\dagger}.4$	622	3187 49?		2676 78	(6^{+})		R = 1.09.7
558.81 4	9.9 3	7332.00	16	6773.21	15	D	R=0.72 4.
564.25 4	7.2 3	8508.34	17	7943.66	16	D	R=0.68 7.
593.12 <i>3</i>	72.7 24	2230.94	6+	1637.81	4+	E2	B(E2)(W.u.)=14.0 <i>11</i> R=1.35 <i>3</i> .
617.45 3	27.0 9	5926.23	14+	5308.77	13+	M1+E2	$A_{22}=+0.33$ 3; $a_{44}=-0.11$ 3; Pol=0.62 20. R=0.61 2. Mult.: Other: d (1997Pe25).
662.50^{\dagger} 7	1.9 1	6069.71?	(12)	5407.21?			
665.43 8	3.4 2	6746.16	$14^{(-)}$	6080.65	$13^{(-)}$	M1+E2	
676.44 5	5.9 2	6746.16	14 ⁽⁻⁾	6069.71?	(12)	E2	B(E2)(W.u.)<11 R=1.17 7.
681.64 5	5.8 <i>3</i>	7943.66	16	7261.96	15		
683.61 [@] 5	6.7 <i>3</i>	4960.53?	(12)	4277.15	11^{+}	M1	R=0.68 4.
746.92 6	4.5 2	6827.49	14	6080.65	13(-)		R=1.15 15.
767.77 5	3.9 2	8099.66	17 ⁽⁻⁾	7332.00	16	E1	B(E1)(W.u.)<9.4×10 ⁻⁵ R=0.53 8.
772.08 4	20.5 8	4349.78	9(-)	3577.67	8+	E1	R=0.77 3.
776.71 3		776.71	2^{+}	0.0	0^{+}	E2	B(E2)(W.u.)=20 4

Continued on next page (footnotes at end of table)

$\gamma(^{102}Cd)$ (continued)

E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	Comments
							R=1.35 2.
700 51 2	45 1 74	5200 77	12+	4510.07	10+	M1 . E2	A_{22} =+0.28 3; a_{44} =-0.04 4; Pol=+0.16 10.
/90.51 3	45.1 14	5308.77	13	4518.27	12	MI+E2	R=0.90 3. Mult.: Other: d (1997Pe25).
808.94 [@] 5	5.3 3	5769.24	14	4960.53?	(12)	E2	R=1.24 <i>10</i> .
822.03 3	62.9 20	3052.97	8+	2230.94	6+	E2	B(E2)(W.u.)=17 4
							R=1.43 3.
833 3@		2482 62	(2^{+})	1649 32	(0^{+})		$A_{22} = +0.55$ J, $a_{44} = -0.14$ J.
837.98 [@] 8	3.0.2	8099.66	$17^{(-)}$	7261.96	15		
843.46 4	7.8 3	8942.69	$18^{(-)}$	8099.66	$17^{(-)}$	M1+E2	R=0.74 <i>6</i> .
							Mult.: Other: d (1997Pe25).
946 05 2	20 6 10	5106 759	11(-)	1210 79	O(-)	БЭ	E_{γ} : poor fit, level energy difference=843.03.
840.93 3 847.07 4	11.2 <i>4</i>	6773.21	15	4549.78	9(*) 14 ⁺	E2	R=1.50 5. R=0.86 3.
849.00 [†] 5	5.9 4	4036.50?		3187.49?			R=0.89 35.
855.66 <i>3</i>	40.6 13	3908.65	10^{+}	3052.97	8+	E2	B(E2)(W.u.)=25 9
							R=1.44 4.
858.99 5	11.4 6	3577.67	8+	2718.84	8+	M1+E2	$A_{22} = +0.20$ 0, $a_{44} = -0.29$ 10. R=1.40 12.
861.09 3	100 3	1637.81	4+	776.71	2+	E2	B(E2)(W.u.)>7.5
							R=1.22 4.
873@		1640 32	(0^{+})	776 71	2+		$A_{22} = +0.29$ 3; $a_{44} = -0.08$ 4; $P0I = +0.39$ 10.
883.89.3	29.0.10	6080.65	$13^{(-)}$	5196.75?	$\frac{2}{11^{(-)}}$	E2	R=1.37.6
923.61 3	20.4 8	2561.41	6+	1637.81	4+	E2	R=1.23 3.
				<	(-)		A_{22} =+0.19 5; a_{44} =-0.03 6; Pol=0.12 6.
930.30 4	16.76	7011.10	15(-)	6080.65 7011-10	$13^{(-)}$	E2	R=1.29 11. P=0.76 10
952.185	533	/945.00	10	/011.10	15.7	D	R = 0.70 <i>19</i> . R = 0.73 <i>8</i>
955.07 <i>4</i>	13.1 5	4008.03	10^{+}	3052.97	8+	E2	$B(E2)(W.u.)=9.5\ 22$
	• • •						R=1.44 5.
1003.91 9	2.8 2	6773.21	15 8 ⁺	5769.24	14 6 ⁺	F2	R=0.98 19. R=1 30 11
1035.42 6	3.9 2	8367.42	17	7332.00	16	D	R=0.70 7.
1038.96 5	7.3 5	2676.78	(6+)	1637.81	4+	E2	R=1.58 15.
1042.76 4	11.7 4	7788.93?	$16^{(-)}$	6746.16	14(-)	E2	B(E2)(W.u.) < 2.9
1056.45 4	9.6.4	8845.38?	$18^{(-)}$	7788.93?	$16^{(-)}$	E2	R = 1.43 9. B(E2)(Wu)=8.4 7
							R=1.34 11.
1080.72 [†] 8	1.9 <i>1</i>	6069.71?	(12)	4988.97?			R=1.6 5.
1085.12 7	3.6 2	7011.10	$15^{(-)}$	5926.23	14^+	E1	R=0.74 7.
1088.56 4	15.8 6	8099.66	17(-)	7011.10	15(-)	E2	B(E2)(W.u.)<7.3 R-1 13 5
1091.88 5	8.1 7	3810.44	(9 ⁺)	2718.84	8+	D	R=0.79 7.
1190.20 4	19.3 7	3908.65	10+	2718.84	8+	E2	B(E2)(W.u.)=2.2 8
17/1 01 /	11 2 4	7011 10	15(-)	5760 24	14	E1	R=1.38 5.
1241.01 4	20.5 7	5769.24	13 /	4518.27	$14 \\ 12^+$	E1 E2	R=0.70 4. R=1.36 4.
1254.36 7	3.2 2	6563.18	$14^{(-)}$	5308.77	13+		R=0.98 13.
1289.44 <i>3</i>	33.8 12	4008.03	10^{+}	2718.84	8+	E2	B(E2)(W.u.)=5.4 <i>13</i>
							K=1.48 4. $\Delta_{22}=\pm0.32$ 8: $\Delta_{44}=-0.17$ 10: $P_{0}=\pm0.03$ 5
							Mult.: $\Delta J=0,-2$ (1988Tr04).

Continued on next page (footnotes at end of table)

$\gamma(^{102}\text{Cd})$ (continued)

E_{γ}^{\ddagger}	Iγ [‡]	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.#	Comments
1296.95 7	4.6 2	4349.78	9(-)	3052.97	8+	E1	R=0.55 19.
1335.70 15	1.3 <i>I</i>	7261.96	15	5926.23	14^{+}		
1405.38 15	1.3 1	7332.00	16	5926.23	14^{+}	E2	
1492.43 8	3.3 2	7261.96	15	5769.24	14	E1	R=0.56 7.
1519.02 10	2.4 2	6827.49	14	5308.77	13+	E1	R=0.50 15.
1562.15 8	3.5 2	6080.65	$13^{(-)}$	4518.27	12^{+}		
1563.86 23	1.2 2	7332.00	16	5769.24	14		E_{γ} : 1562.75 from level energy difference. R=0.8 4.
1631.26 8	5.3 3	4349.78	9(-)	2718.84	8+	E1	R=0.76 8.
1668.27 11	2.1 2	10513.7?	(20)	8845.38?	$18^{(-)}$	E2	R=1.8 4.
1805.17 8	2.7 1	6323.54	$13^{(-)}$	4518.27	12^{+}	E1	R=0.60 12.
1826.76 [@] 8	1.9 <i>1</i>	6563.18	14(-)	4736.57	(13)		R=1.30 25.

[†] Ordering of 1081-952-849-511 cascade is not certain (1997Pe25).
[‡] From 1997Pe25.
[#] From 1997Pe25 and 2001Li24. Dipole transitions are considered E1 due to its large energy in connection with a R value characteristic of a stretched dipole (1997Pe25). No δ given for mixed transitions.

[@] Placement of transition in the level scheme is uncertain.

 $^{102}_{48}\text{Cd}_{54}$

 $^{102}_{\ 48}\mathrm{Cd}_{54}$

7

<u>(HI,xnγ)</u>

