|                 |              | History              |                        |
|-----------------|--------------|----------------------|------------------------|
| Туре            | Author       | Citation             | Literature Cutoff Date |
| Full Evaluation | D. De Frenne | NDS 110, 1745 (2009) | 31-Dec-2008            |

Parent: <sup>102</sup>In: E=0.0;  $J^{\pi}=(6^+)$ ;  $T_{1/2}=23.3 \text{ s } l$ ;  $Q(\varepsilon)=8.95\times10^3 l2$ ;  $\%\varepsilon+\%\beta^+$  decay=100.0 <sup>102</sup>In-T<sub>1/2</sub>: from delayed gammas (2003Gi06).

<sup>102</sup>In-Q(ε): from 2003Gi06. Other: 8.97E3 11 (syst,2003Au03).

Measured E $\gamma$ ,  $\gamma\gamma$ , I $\gamma$ , and I $\beta$ ,  $\beta$  strength functions using an array of 42 Ge detectors and total absorption spectroscopy (TAS) with a large NaI(Tl) detector.

All data are from 2003Gi06 as they are more complete than those of 1995Sz01. Others: 1995Sz01.

#### 102Cd Levels

| E(level) <sup>†‡</sup> | $J^{\pi \#}$ |
|------------------------|--------------|
| 0.0                    | $0^{+}$      |
| 776.61 10              | 2+           |
| 1637.61 14             | 4+           |
| 2034.29 17             | $(5^+, 6^+)$ |
| 2230.64 16             | 6+           |
| 2386.79 19             | $(6^{+})$    |
| 2402.8 3               |              |
| 2561.09 16             | $(6)^{+}$    |
| 2589.9 4               |              |
| 2597.63 21             |              |
| 2674.6 6               |              |
| 2678.0 8               | $(6^{+})$    |
| 2718.06 20             | (8+)         |
| 2730.6 20              |              |
| 2827.95 22             |              |
| 2856.2 9               |              |
| 2868.1 10              |              |
| 2874.24 18             |              |
| 2930.9 6               |              |
| 2985.0 5               |              |
| 3029.8 11              |              |
| 3041.9 11              |              |
| 3052.66 23             | 8+           |
| 3058.6 11              |              |
| 3072.7 20              |              |
| 3098.9 8               |              |
| 3115.4 20              |              |
| 3128.9 <i>3</i>        |              |
| 3149.7 20              |              |
| 3193.7 7               |              |
| 3197.2 5               |              |
| 3218.3 8               |              |
| 3228.8 6               |              |
| 3263.4 20              |              |
| 3268.1 5               |              |
| 3271.0 <i>3</i>        |              |
| 3276.9 7               |              |
| 3339.0 10              |              |
| 3370.9 20              |              |
| 3381.3 8               |              |
| 3385.1 8               |              |
| 3389.2 4               |              |
|                        |              |

# <sup>102</sup>Cd Levels (continued)

| E(level) <sup>†‡</sup> | Comments                                                                  |
|------------------------|---------------------------------------------------------------------------|
| 3422.2 5               |                                                                           |
| 3449.67 25             |                                                                           |
| 3477.6 11              |                                                                           |
| 3481.8 20              |                                                                           |
| 3494.7 6               |                                                                           |
| 3498.7 20              |                                                                           |
| 3552.0.3               |                                                                           |
| 3563.2.3               |                                                                           |
| 3572.7.10              | E(level): 3572.2 and 3573.9 are considered as one level by the evaluator. |
| 3577.4 9               |                                                                           |
| 3583.3 20              |                                                                           |
| 3590.0 15              |                                                                           |
| 3594.9 6               |                                                                           |
| 3598.4 8               |                                                                           |
| 3604.8 20              |                                                                           |
| 3609.1 4               |                                                                           |
| 3613.3 20              |                                                                           |
| 3037.44                |                                                                           |
| 3689.4.20              |                                                                           |
| 3702.9.5               |                                                                           |
| 3724.0 9               | E(level): 3722.8 and 3724.2 are considered as one level by evaluator.     |
| 3735.7 20              |                                                                           |
| 3741.0 4               |                                                                           |
| 3750.1 11              |                                                                           |
| 3753.0 <i>3</i>        |                                                                           |
| 3780.5 7               |                                                                           |
| 3805.6 5               |                                                                           |
| 3829.5 4               |                                                                           |
| 3853 5 5               |                                                                           |
| 3864 3 5               |                                                                           |
| 3874.4 15              |                                                                           |
| 3877.4 4               |                                                                           |
| 3894.4 8               |                                                                           |
| 3907.1 8               |                                                                           |
| 3911.5 4               |                                                                           |
| 3920.1 9               |                                                                           |
| 3938.1 7               |                                                                           |
| 3952.2 9               |                                                                           |
| 397634                 |                                                                           |
| 3989.6 10              |                                                                           |
| 3999.2 5               |                                                                           |
| 4015.3 7               |                                                                           |
| 4022.3 7               |                                                                           |
| 4028.0 11              |                                                                           |
| 4034.6 6               |                                                                           |
| 4039.77                | Educable 4048.8 and 4050.0 are considered as one level by avaluates       |
| 4048.9 4               | E(IEVEI). 4040.0 and 4030.9 are considered as one level by evaluator.     |
| 4082 4 11              |                                                                           |
| 4085.9 6               |                                                                           |
| 4088.1 10              |                                                                           |
| 4103.9 11              |                                                                           |
| 4121.4 10              |                                                                           |
|                        |                                                                           |

# <sup>102</sup>Cd Levels (continued)

| E(level) <sup>†‡</sup> | Comments                                                              |
|------------------------|-----------------------------------------------------------------------|
| 4131.2 6               |                                                                       |
| 4142.4 20              |                                                                       |
| 4147.0 3               |                                                                       |
| 4102.0 21              |                                                                       |
| 4182.8 4               |                                                                       |
| 4189.5 8               |                                                                       |
| 4197.2 15              |                                                                       |
| 4206.2 3               |                                                                       |
| 4224.1 7               |                                                                       |
| 4227.9 5               |                                                                       |
| 4252.7 15              |                                                                       |
| 4265.63 25             |                                                                       |
| 4282.8 5               |                                                                       |
| 4311.7 4               |                                                                       |
| 4332.7 20              |                                                                       |
| 4335.2 10              |                                                                       |
| 4357.9 8               |                                                                       |
| 4360.6 8               |                                                                       |
| 4368.1 21              |                                                                       |
| 4373.0 7               |                                                                       |
| 4377.4 11              |                                                                       |
| 4416.0 4               |                                                                       |
| 4424.3 11              |                                                                       |
| 4427.6 5               |                                                                       |
| 4440.8 10              |                                                                       |
| 4446.0 21              |                                                                       |
| 4455.0 /               |                                                                       |
| 4479.3 11              |                                                                       |
| 4497.1 7               |                                                                       |
| 4512.8 15              | E(level): 4512.1 and 4513.4 are considered as one level by evaluator. |
| 4525.3 5               |                                                                       |
| 4528.8 21              |                                                                       |
| 4569.3 10              |                                                                       |
| 4582.0 6               |                                                                       |
| 4601.1 5               |                                                                       |
| 4628.9 10              |                                                                       |
| 4640.5 /               |                                                                       |
| 4664.5 6               |                                                                       |
| 4668.9 15              |                                                                       |
| 4672.7 20              |                                                                       |
| 4680.3 7               |                                                                       |
| 4685.3 11              |                                                                       |
| 4009.87                |                                                                       |
| 4716.9 20              |                                                                       |
| 4720.9 15              | E(level): 4720.0 and 4721.9 are considered as one level by evaluator. |
| 4735.8 9               |                                                                       |
| 4/39.7 5               |                                                                       |
| 4777 3 4               |                                                                       |
| ····.5 Ŧ               |                                                                       |

# <sup>102</sup>Cd Levels (continued)

| E(level) <sup>†‡</sup>                                                                                                                                                                                                                        | Comments                                                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 4797.9 20<br>4821.1 8<br>4824.0 10<br>4827.8 9<br>4845.5 6<br>4861.8 20<br>4872.1 8<br>4886.4 8<br>4906.7 7<br>4909.6 9<br>4915.6 5<br>4925.0 5<br>4930.1 20<br>4981.8 5<br>4996.1 20                                                         | E(level): 4915.4 and 4917.4 are considered as one level by evaluator.                                                                          |
| $\begin{array}{c} 5004.1 \ 20 \\ 5022.1 \ 20 \\ 5040.7 \ 9 \\ 5055.3 \ 20 \\ 5064.8 \ 8 \\ 5068.1 \ 6 \\ 5071.6 \ 11 \\ 5105.4 \ 11 \\ 5107.4 \ 7 \\ 5127.5 \ 9 \\ 5130.5 \ 11 \\ 5141.2 \ 5 \\ 5149.7 \ 21 \\ 5175.6 \ 5 \end{array}$        | E(level): 5175.0 and 5177.0 are considered as one level by evaluator.                                                                          |
| 5182.3 21<br>5191.3 10<br>5193.9 6<br>5237.5 7                                                                                                                                                                                                |                                                                                                                                                |
| 5246.2 9<br>5273.8 12<br>5298.2 10<br>5332.5 10<br>5361.6 11<br>5387.9 11                                                                                                                                                                     | E(level): 5246.4 and 5246.5 are considered as one level by evaluator.                                                                          |
| $\begin{array}{c} 5396.6\ 7\\ 5399.1\ 5\\ 5420.7\ 9\\ 5435.9\ 10\\ 5441.2\ 20\\ 5462.2\ 20\\ 5462.2\ 20\\ 5477.7\ 20\\ 5489.2\ 7\\ 5506.9\ 7\\ 5508.7\ 5\\ 5540.1\ 8\\ 5570.5\ 7\\ 5614.1\ 20\\ 5621.2\ 9\\ 5654.8\ 5\\ 5670.0\ 6\end{array}$ | E(level): 5395.8 and 5397.2 are considered as one level by evaluator.<br>E(level): 5398.6 and 5401.1 are considered as one level by evaluator. |
| 5670.9 6<br>5691.7 4<br>5702.1 10                                                                                                                                                                                                             | E(level): 56/0.5 and 56/2.3 are considered as one level by evaluator.<br>E(level): 5691.5 and 5693.0 are considered as one level by evaluator. |

# <sup>102</sup>Cd Levels (continued)

| E(level) <sup>†‡</sup> | Comments                                                              |
|------------------------|-----------------------------------------------------------------------|
| 5705.4 11              |                                                                       |
| 5722.7 6               |                                                                       |
| 5752.7.6               |                                                                       |
| 5758.8 15              | E(level): 5757.3 and 5760.1 are considered as one level by evaluator. |
| 5769.6 20              |                                                                       |
| 5779.8 8               |                                                                       |
| 5787.2 10              |                                                                       |
| 5811.6 21              |                                                                       |
| 5838.9 20              |                                                                       |
| 5849.0 10              |                                                                       |
| 5857.8 12              |                                                                       |
| 5861.6 20              |                                                                       |
| 5879 9 11              |                                                                       |
| 5888.3 20              |                                                                       |
| 5895.0 20              |                                                                       |
| 5902.4 21              |                                                                       |
| 5909.2 7               | E(level): 5909.0 and 5911.7 are considered as one level by evaluator. |
| 5932.6.6               |                                                                       |
| 5934.5 5               |                                                                       |
| 5945.4 9               | E(level): 5942.2 and 5946.1 are considered as one level by evaluator. |
| 5948.3 9               |                                                                       |
| 6018.9 <i>11</i>       |                                                                       |
| 6066 3 21              |                                                                       |
| 6083.5 11              |                                                                       |
| 6111.2 20              |                                                                       |
| 6146.0 20              |                                                                       |
| 6150.4 12              |                                                                       |
| 6195.6 6               |                                                                       |
| 6225.9 8               | E(level): 6225.0 and 6226.6 are considered as one level by evaluator. |
| 6244.3 20              |                                                                       |
| 6255.7 15              |                                                                       |
| 6292.2 0               |                                                                       |
| 6344.1 11              |                                                                       |
| 6352.2 10              |                                                                       |
| 6418.6 15              | E(level): 6418.3 and 6419.1 are considered as one level by evaluator. |
| 6447.9 11              |                                                                       |
| 6525.8 11              |                                                                       |
| 6554.8 11              |                                                                       |
| 6612.1 11              |                                                                       |
| 6650.9 20              |                                                                       |
| 6688 8 20              |                                                                       |
| 6746.7 20              |                                                                       |
| 6800.0 <i>21</i>       |                                                                       |
| 6963.8 20              |                                                                       |
| 7007.2 20              |                                                                       |
| 7361.0 20              |                                                                       |
|                        |                                                                       |

#### 102Cd Levels (continued)

<sup>†</sup> Closely spaced (within less than 2 keV or so) levels whose energies overlap within the uncertainties are treated as one level by the evaluator, as advised in e-mail reply from M. Gierlik. It is possible that several other closely spaced levels (within 4 keV or so) also correspond to one level.

<sup>‡</sup> From least-squares fit to  $E\gamma$ 's (by evaluator).

# From Adopted Levels.

#### $\varepsilon, \beta^+$ radiations

log *ft* values have not been calculated since the  $\varepsilon + \beta^+$  feedings are only the apparent values and log *ft* values from these are not meaningful following 2003GiZX.

| E(decay)                    | E(level) | $I(\varepsilon + \beta^+)^{\dagger \ddagger}$ | E(decay)                     | E(level)    | $I(\varepsilon + \beta^+)^{\dagger \ddagger}$ |
|-----------------------------|----------|-----------------------------------------------|------------------------------|-------------|-----------------------------------------------|
| $(1.59 \times 10^3 \ 12)$   | 7361.0   | 0.016 6                                       | $(3.07 \times 10^3 \ 12)$    | 5879.9      | 0.08 3                                        |
| $(1.83 \times 10^3 \ 12)$   | 7124.1   | 0.016 8                                       | $(3.08 \times 10^3 \ 12)$    | 5865.6      | 0.15 4                                        |
| $(1.94 \times 10^3 \ 12)$   | 7007.2   | 0.014 10                                      | $(3.09 \times 10^3 \ 12)$    | 5861.6      | 0.100 20                                      |
| $(1.99 \times 10^{3\#} 12)$ | 6963.8   | 0.03 3                                        | $(3.09 \times 10^3 \ 12)$    | 5857.8      | 0.028 10                                      |
| $(2.15 \times 10^3 \ 12)$   | 6800.0   | 0.030 12                                      | $(3.10 \times 10^3 \ 12)$    | 5849.0      | 0.14 4                                        |
| $(2.20 \times 10^3 \ 12)$   | 6746.7   | 0.016 8                                       | $(3.11 \times 10^3 \ 12)$    | 5838.9      | 0.038 20                                      |
| $(2.26 \times 10^3 \ 12)$   | 6688.8   | 0.016 8                                       | $(3.14 \times 10^3 \ 12)$    | 5811.6      | 0.036 16                                      |
| $(2.28 \times 10^3 \ 12)$   | 6666.8   | 0.030 10                                      | $(3.15 \times 10^{3#} 12)$   | 5797.3      | < 0.23                                        |
| $(2.30 \times 10^3 \ 12)$   | 6650.9   | 0.016 8                                       | $(3.16 \times 10^3 \ 12)$    | 5787.2      | 0.13 4                                        |
| $(2.34 \times 10^3 \ 12)$   | 6612.1   | 0.010 6                                       | $(3.17 \times 10^3 \ 12)$    | 5779.8      | 0.29 8                                        |
| $(2.40 \times 10^3 \ 12)$   | 6554.8   | 0.028 10                                      | $(3.18 \times 10^3 \ 12)$    | 5769.6      | 0.11 3                                        |
| $(2.42 \times 10^3 \ 12)$   | 6525.8   | 0.016 10                                      | $(3.19 \times 10^3 \ 12)$    | 5758.8      | 0.26 7                                        |
| $(2.45 \times 10^3 \ 12)$   | 6504.8   | 0.026 12                                      | $(3.20 \times 10^3 \ 12)$    | 5752.7      | 0.52 14                                       |
| $(2.50 \times 10^3 \ 12)$   | 6447.9   | 0.066 22                                      | $(3.21 \times 10^3 \ 12)$    | 5737.4      | 0.044 22                                      |
| $(2.53 \times 10^3 \ 12)$   | 6418.6   | 0.044 21                                      | $(3.23 \times 10^3 \ 12)$    | 5722.7      | 0.22 7                                        |
| $(2.60 \times 10^3 \ 12)$   | 6352.2   | 0.048 20                                      | $(3.24 \times 10^3 \ 12)$    | 5705.4      | 0.14 3                                        |
| $(2.61 \times 10^3 \ 12)$   | 6344.1   | 0.070 24                                      | $(3.25 \times 10^3 \ l2)$    | 5702.1      | 0.018 8                                       |
| $(2.63 \times 10^3 \ 12)$   | 6320.5   | 0.032 10                                      | $(3.26 \times 10^3 \ l2)$    | 5691.7      | 0.93 14                                       |
| $(2.66 \times 10^3 \ 12)$   | 6292.2   | 0.48 9                                        | $(3.28 \times 10^3 \ 12)$    | 5670.9      | 0.16 4                                        |
| $(2.69 \times 10^3 \ 12)$   | 6255.7   | 0.15 5                                        | $(3.30 \times 10^3 \ 12)$    | 5654.8      | 0.47 11                                       |
| $(2.71 \times 10^3 \ l2)$   | 6244.3   | 0.08 3                                        | $(3.33 \times 10^3 \ 12)$    | 5621.2      | 0.048 16                                      |
| $(2.72 \times 10^3 \ 12)$   | 6225.9   | 0.066 17                                      | $(3.34 \times 10^3 \ 12)$    | 5614.1      | 0.07 4                                        |
| $(2.75 \times 10^3 \ 12)$   | 6195.6   | 0.110 22                                      | $(3.38 \times 10^3 \ 12)$    | 5570.5      | 0.21 4                                        |
| $(2.78 \times 10^3 \ 12)$   | 6169.4   | 0.47 8                                        | $(3.41 \times 10^3 \ 12)$    | 5540.1      | 0.21 4                                        |
| $(2.80 \times 10^3 \ 12)$   | 6150.4   | 0.59 10                                       | $(3.44 \times 10^3 \ 12)$    | 5508.7      | 0.14 3                                        |
| $(2.80 \times 10^3 \ 12)$   | 6146.0   | 0.09 3                                        | $(3.44 \times 10^3 \ 12)$    | 5506.9      | 0.53 8                                        |
| $(2.84 \times 10^{3} 12)$   | 6111.2   | 0.092 20                                      | $(3.46 \times 10^{3} 12)$    | 5489.2      | 0.25 4                                        |
| $(2.87 \times 10^3 \ 12)$   | 6083.5   | 0.024 8                                       | $(3.47 \times 10^3 \ 12)$    | 5477.7      | 0.06 3                                        |
| $(2.88 \times 10^3 \ 12)$   | 6066.3   | 0.038 12                                      | $(3.49 \times 10^{3 \#} 12)$ | 5462.2      | 0.03 3                                        |
| $(2.89 \times 10^3 \ 12)$   | 6057.6   | 0.068 18                                      | $(3.51 \times 10^3 \ 12)$    | 5441.2      | 0.06 3                                        |
| $(2.93 \times 10^3 \ 12)$   | 6018.9   | 0.08 3                                        | $(3.51 \times 10^3 \ 12)$    | 5435.9      | 0.11 5                                        |
| $(3.00 \times 10^3 \ 12)$   | 5948.3   | 0.064 22                                      | $(3.53 \times 10^3 \ 12)$    | 5420.7      | 0.30 6                                        |
| $(3.00 \times 10^3 \ 12)$   | 5945.4   | 0.24 6                                        | $(3.55 \times 10^3 \ 12)$    | 5399.1      | 0.28 7                                        |
| $(3.02 \times 10^3 \ 12)$   | 5934.5   | 0.18 4                                        | $(3.55 \times 10^3 \ 12)$    | 5396.6      | 0.40 6                                        |
| $(3.02 \times 10^3 \ 12)$   | 5932.6   | 0.38 6                                        | $(3.56 \times 10^{3} 12)$    | 5387.9      | 0.058 24                                      |
| $(3.03 \times 10^3 \ 12)$   | 5918.9   | 0.22 5                                        | $(3.59 \times 10^3 \ 12)$    | 5361.6      | 0.066 20                                      |
| $(3.04 \times 10^{5} 12)$   | 5909.2   | 0.27 7                                        | $(3.62 \times 10^{5} 12)$    | 5332.5      | 0.060 20                                      |
| $(3.05 \times 10^{3} 12)$   | 5902.4   | 0.08 3                                        | $(3.65 \times 10^{5} 12)$    | 5298.2      | 0.07 6                                        |
| $(3.06 \times 10^{3} 12)$   | 5895.0   | 0.12 3                                        | $(3.68 \times 10^{3} 12)$    | 5273.8      | 0.10 3                                        |
| $(3.06 \times 10^3 \ 12)$   | 5888.3   | 0.070 22                                      | $(3.70 \times 10^3 \ 12)$    | 5246.2      | 0.28 8                                        |
|                             |          |                                               | Continued or                 | n next page | (footnotes at end of table)                   |

| $^{102}$ In $\varepsilon$ decay | 2003Gi06 (continued) |
|---------------------------------|----------------------|
|                                 |                      |

## $\epsilon, \beta^+$ radiations (continued)

| E(decay)                                                | E(level) | $I(\varepsilon + \beta^+)^{\dagger\ddagger}$ | E(decay)                                                | E(level)     | $I(\varepsilon + \beta^+)^{\dagger \ddagger}$ |
|---------------------------------------------------------|----------|----------------------------------------------|---------------------------------------------------------|--------------|-----------------------------------------------|
| $(3.71 \times 10^3 \ 12)$                               | 5237.5   | 0.29 4                                       | $(4.42 \times 10^3 \ 12)$                               | 4528.8       | 0.21 4                                        |
| $(3.76 \times 10^3 \ 12)$                               | 5193.9   | 0.092 23                                     | $(4.42 \times 10^3 \ 12)$                               | 4525.3       | 0.22 4                                        |
| $(3.76 \times 10^3 \ 12)$                               | 5191.3   | 0.12 3                                       | $(4.44 \times 10^3 \ 12)$                               | 4512.8       | 0.21 9                                        |
| $(3.77 \times 10^3 \ 12)$                               | 5182.3   | 0.038 12                                     | $(4.45 \times 10^3 \ 12)$                               | 4497.1       | 0.46 7                                        |
| $(3.77 \times 10^3 \ 12)$                               | 5175.6   | 0.46 6                                       | $(4.47 \times 10^3 \ 12)$                               | 4479.3       | 0.052 18                                      |
| $(3.80 \times 10^3 \ 12)$                               | 5149.7   | 0.11 4                                       | $(4.49 \times 10^3 \ 12)$                               | 4460.1       | 0.13 4                                        |
| $(3.81 \times 10^3 \ 12)$                               | 5141.2   | 0.092 24                                     | $(4.50 \times 10^3 \ 12)$                               | 4453.6       | 0.30 5                                        |
| $(3.82 \times 10^3 \ 12)$                               | 5130.5   | 0.10 3                                       | $(4.50 \times 10^3 \ 12)$                               | 4446.0       | 0.29 6                                        |
| $(3.82 \times 10^3 \ 12)$                               | 5127.5   | 0.14 5                                       | $(4.51 \times 10^3 \ 12)$                               | 4440.8       | 0.042 20                                      |
| $(3.84 \times 10^3 \ 12)$                               | 5107.4   | 0.054 18                                     | $(4.52 \times 10^3 \ 12)$                               | 4427.6       | 0.50 8                                        |
| $(3.84 \times 10^3 \ 12)$                               | 5105.4   | 0.14 4                                       | $(4.53 \times 10^3 \ 12)$                               | 4424.3       | 0.10 3                                        |
| $(3.88 \times 10^3 \ 12)$                               | 5071.6   | 0.072 24                                     | $(4.53 \times 10^3 \ 12)$                               | 4416.0       | 1.02 19                                       |
| $(3.88 \times 10^3 \ 12)$                               | 5068.1   | 0.15 4                                       | $(4.56 \times 10^3 \ 12)$                               | 4385.7       | 1.17 15                                       |
| $(3.89 \times 10^3 \ 12)$                               | 5064.8   | 0.100 24                                     | $(4.57 \times 10^3 \ 12)$                               | 4377.4       | 0.058 20                                      |
| $(3.89 \times 10^{3\#} 12)$                             | 5055.3   | 0.014 14                                     | $(4.58 \times 10^3 \ 12)$                               | 4373.0       | 0.51 8                                        |
| $(3.91 \times 10^3 \ 12)$                               | 5040.7   | 0.09 5                                       | $(4.58 \times 10^3 \ 12)$                               | 4368.1       | 0.096 24                                      |
| $(3.93 \times 10^3 \ 12)$                               | 5022.1   | 0.18 6                                       | $(4.59 \times 10^3 \ 12)$                               | 4360.6       | 0.44 9                                        |
| $(3.95 \times 10^3 \ 12)$                               | 5004.1   | 0.034 20                                     | $(4.59 \times 10^3 \ 12)$                               | 4357.9       | 0.26 5                                        |
| $(3.95 \times 10^{3\#} 12)$                             | 4996.1   | 0.024 24                                     | $(4.61 \times 10^3 \ 12)$                               | 4340.2       | 0.35 6                                        |
| $(3.97 \times 10^3 \ 12)$                               | 4981.8   | 1 01 75                                      | $(4.61 \times 10^3 \ 12)$                               | 4335.2       | 0.24.3                                        |
| $(4.02 \times 10^3 \ l^2)$                              | 4930.1   | 0.35.8                                       | $(4.62 \times 10^3 \ 12)$                               | 4332.7       | 0.24.5                                        |
| $(4.03 \times 10^3 \ 12)$                               | 4925.0   | 1 13 17                                      | $(4.64 \times 10^3 \ 12)$                               | 4311 7       | 0.42.6                                        |
| $(4.03 \times 10^3 \ l^2)$                              | 4915.6   | 0.50.8                                       | $(4.67 \times 10^3 \ 12)$                               | 4282.8       | 0.24.5                                        |
| $(4.04 \times 10^3 \ l^2)$                              | 4909.6   | 0.60 11                                      | $(4.68 \times 10^3 \ 12)$                               | 4265.63      | 3.00.20                                       |
| $(4.04 \times 10^3 \ 12)$                               | 4906.7   | 0.106.24                                     | $(4.70 \times 10^3 \ l^2)$                              | 4252.7       | 0.28 5                                        |
| $(4.06 \times 10^3 \ l^2)$                              | 4886.4   | 0.12.4                                       | $(4.71 \times 10^3 \ l^2)$                              | 4242.5       | 0.11.3                                        |
| $(4.08 \times 10^3 \ 12)$                               | 4872.1   | 0.79 14                                      | $(4.72 \times 10^3 \ 12)$                               | 4227.9       | 0.42 7                                        |
| $(4.09 \times 10^{3\#} 12)$                             | 4861.8   | 0.008.8                                      | $(4.73 \times 10^3 \ 12)$                               | 4224 1       | 0.20.5                                        |
| $(4.0)\times 10^{3}$ 12)                                | 4845 5   | 0.32 6                                       | $(4.73 \times 10^{-12})$<br>$(4.74 \times 10^{3} \ 12)$ | 4206.2       | 2 97 17                                       |
| $(4.12 \times 10^3 \ I2)$                               | 4827.8   | 0.062.20                                     | $(4.75 \times 10^3 \ l^2)$                              | 4197.2       | 0.056.24                                      |
| $(4.12\times10^{3} 12)$                                 | 4824.0   | 0.002.20                                     | $(4.76 \times 10^3 \ 12)$                               | 4189.5       | 0.51.3                                        |
| $(4.13 \times 10^3 \ 12)$                               | 4821.1   | 0.50.7                                       | $(4.77 \times 10^3 \ 12)$                               | 4182.8       | 0.35.10                                       |
| $(4.15 \times 10^3 \ l^2)$                              | 4797 9   | 0.13.6                                       | $(4.77 \times 10^3 \ 12)$                               | 4175.8       | 0.20.4                                        |
| $(4.17 \times 10^3 \ l^2)$                              | 4777.3   | 0.34 9                                       | $(4.79 \times 10^3 \ 12)$                               | 4162.0       | 0.070 14                                      |
| $(4.20 \times 10^3 \ 12)$                               | 4754 3   | 0.094 20                                     | $(4.80 \times 10^3 \ 12)$                               | 4147.0       | 0.77.11                                       |
| $(4.20\times10^{3} I2)$                                 | 4739.7   | 1 47 16                                      | $(4.81 \times 10^3 \ 12)$                               | 4142.4       | 0.22.4                                        |
| $(4.21 \times 10^3 \ 12)$                               | 4735.8   | 0.16.3                                       | $(4.82 \times 10^3 \ 12)$                               | 4131.2       | 0.33.5                                        |
| $(4.23 \times 10^3 \ l^2)$                              | 4720.9   | 0.17.6                                       | $(4.83 \times 10^3 \ 12)$                               | 4121.4       | 0.20.4                                        |
| $(4.23 \times 10^3 \ 12)$                               | 4716.9   | 0.14 4                                       | $(4.85 \times 10^3 \ 12)$                               | 4103.9       | 0.034 10                                      |
| $(4.24 \times 10^3 \ 12)$                               | 4709.4   | 0.21.5                                       | $(4.86 \times 10^3 \ 12)$                               | 4088.1       | 0.106 24                                      |
| $(4.26 \times 10^3 \ 12)$                               | 4689.8   | 0.18.5                                       | $(4.86 \times 10^3 \ 12)$                               | 4085.9       | 0.38 7                                        |
| $(4.26 \times 10^3 \ 12)$                               | 4685.3   | 0.23 5                                       | $(4.87 \times 10^3 \ 12)$                               | 4082.4       | 0.042 16                                      |
| $(4.27 \times 10^3 \ 12)$                               | 4680.3   | 0.35 5                                       | $(4.88 \times 10^3 \ 12)$                               | 4071.7       | 1.17 13                                       |
| $(4.28 \times 10^{3\#} 12)$                             | 4672 7   | 0.03.3                                       | $(4.90 \times 10^3 \ 12)$                               | 4048 9       | 1 33 11                                       |
| $(4.28 \times 10^3 \ 12)$                               | 4668.9   | 0.03 5                                       | $(4.91 \times 10^3 \ 12)$                               | 4039 7       | 0.85.6                                        |
| $(4.29 \times 10^3 \ l^2)$                              | 4664 5   | 0.33.8                                       | $(4.92 \times 10^3 \ 12)$                               | 4034.6       | 0.40.5                                        |
| $(1.2)\times 10^{3}$ (12)                               | 4657.3   | 0.03 3                                       | $(1.92\times10^3 \ 12)$                                 | 4028.0       | 0.13 4                                        |
| $(4.2)\times 10^{-12}$                                  | 4640.5   | 0.05 5                                       | $(4.92 \times 10^{-12})$<br>$(4.93 \times 10^{3} \ 12)$ | 4022.0       | 1 08 14                                       |
| $(4.31 \times 10^{-12})$<br>$(4.32 \times 10^{3} \ 12)$ | 4628.9   | 0.164                                        | $(4.93 \times 10^{-12})$<br>$(4.93 \times 10^{3} \ 12)$ | 4015 3       | 0 192 18                                      |
| $(4.35 \times 10^3 \ 12)$                               | 4601 1   | 0.54.8                                       | $(4.95 \times 10^3 \ 12)$                               | 3000 2       | 0.54.8                                        |
| $(4.37 \times 10^3 \ 12)$                               | 4582.0   | 0.50.7                                       | $(4.96 \times 10^3 \ 12)$                               | 3989.6       | 0.18.4                                        |
| $(4.38 \times 10^3 \ 12)$                               | 4569 3   | 0.20 5                                       | $(4.97 \times 10^3 \ 12)$                               | 3976 3       | 0.15 3                                        |
| $(4.41 \times 10^3 \ 12)$                               | 4536.4   | 0.15.5                                       | $(4.99 \times 10^3 \ 12)$                               | 3961 7       | 0.88 10                                       |
| (                                                       | 1550.7   | 0.10 0                                       | Continued o                                             | on next page | e (footnotes at end of table)                 |

| <sup>102</sup> In $\varepsilon$ decay | 2003Gi06 (continued) |
|---------------------------------------|----------------------|
| in o accaj                            |                      |

|                                                          |          |                                               | c,p                                                     | radiations | (00111111000)                                |
|----------------------------------------------------------|----------|-----------------------------------------------|---------------------------------------------------------|------------|----------------------------------------------|
| E(decay)                                                 | E(level) | $I(\varepsilon + \beta^+)^{\dagger \ddagger}$ | E(decay)                                                | E(level)   | $I(\varepsilon + \beta^+)^{\dagger\ddagger}$ |
| $(5.00 \times 10^3 I^2)$                                 | 3952.2   | 0.27.5                                        | $(5.50 \times 10^3 \ l^2)$                              | 3449 67    | 1 26 18                                      |
| $(5.00\times10^{-12})$<br>$(5.01\times10^{3}$ 12)        | 3938.1   | 0.13.4                                        | $(5.53 \times 10^3 \ 12)$                               | 3422.2     | 0.74.9                                       |
| $(5.03 \times 10^3 \ l^2)$                               | 3920.1   | 0.66 10                                       | $(5.56 \times 10^3 \ 12)$                               | 3389.2     | 0.80 15                                      |
| $(5.03\times10^{3} 12)$                                  | 3911.5   | 1 29 11                                       | $(5.56 \times 10^3 \ 12)$                               | 3385.1     | 0.33.6                                       |
| $(5.04 \times 10^3 \ l^2)$                               | 3907.1   | 0.22.5                                        | $(5.57 \times 10^3 \ 12)$                               | 3381.3     | 0.21 4                                       |
| $(5.06 \times 10^3 \ 12)$                                | 3894.4   | 0.53 6                                        | $(5.58 \times 10^3 \ 12)$                               | 3370.9     | 0.22.4                                       |
| $(5.00\times10^{-12})$<br>$(5.07\times10^{3}$ 12)        | 3877.4   | 1 19 75                                       | $(5.61 \times 10^3 \ 12)$                               | 3339.0     | 0.088.18                                     |
| $(5.08 \times 10^3 \ 12)$                                | 3874.4   | 0.22.6                                        | $(5.67 \times 10^3 \ 12)$                               | 3276.9     | 0.28.7                                       |
| $(5.00\times10^3 \ l^2)$                                 | 3864.3   | 0.14 5                                        | $(5.67 \times 10^3 \ 12)$                               | 3271.0     | 0.35 12                                      |
| $(5.0)\times(10^{-12})$                                  | 3853.5   | 0.96.15                                       | $(5.68 \times 10^3 \ 12)$                               | 3268.1     | 3 42 17                                      |
| $(5.10\times10^3 \ l^2)$                                 | 3847.3   | 0.14.3                                        | $(5.60\times10^{-12})$<br>$(5.69\times10^{3}$ 12)       | 3263.4     | 0.180.20                                     |
| $(5.10\times10^{-12})$<br>$(5.12\times10^{-3})$          | 3829.5   | 1 14 16                                       | $(5.0)\times 10^{-12}$                                  | 3228.8     | 0.63.9                                       |
| $(5.12\times10^3 \ l^2)$                                 | 3805.6   | 0.91 12                                       | $(5.72\times10^{3} 12)$                                 | 3218.3     | 0.33 5                                       |
| $(5.17 \times 10^3 \ l^2)$                               | 3780.5   | 0.21.5                                        | $(5.75 \times 10^3 \ 12)$                               | 3197.2     | 0.44 9                                       |
| $(5.20 \times 10^3 \ l^2)$                               | 3753.0   | 0.66 7                                        | $(5.76 \times 10^3 \ 12)$                               | 3193.7     | 0.15.5                                       |
| $(5.20 \times 10^3 \ 12)$                                | 3750.1   | 0.14.3                                        | $(5.80 \times 10^3 \ 12)$                               | 3149.7     | 0.094 24                                     |
| $(5.21 \times 10^3 \ 12)$                                | 3741.0   | 0.88 10                                       | $(5.82 \times 10^3 \ 12)$                               | 3128.9     | 1.13 10                                      |
| $(5.21 \times 10^3 \ 12)$                                | 3735.7   | 0.15 6                                        | $(5.83 \times 10^3 \ 12)$                               | 3115.4     | 0.20 4                                       |
| $(5.23 \times 10^3 \ 12)$                                | 3724.0   | 1.17.9                                        | $(5.85 \times 10^3 \ 12)$                               | 3098.9     | 0.23 3                                       |
| $(5.25 \times 10^{3#} 12)$                               | 3702.9   | 0.04.9                                        | $(5.88 \times 10^3 \ 12)$                               | 3072.7     | 0.12.3                                       |
| $(5.25 \times 10^3 \ 12)$                                | 3689.4   | 0.072.20                                      | $(5.80 \times 10^{-12})$<br>$(5.89 \times 10^{3} \ 12)$ | 3058.6     | 0.27.3                                       |
| $(5.20)(10^{-12})$<br>$(5.30\times10^{3}$ 12)            | 3649.0   | 0.77.9                                        | $(5.0)\times 10^{3}$ (5.00×10 <sup>3</sup> # 12)        | 3052.66    | <0.1                                         |
| $(5.30 \times 10^{-12})$<br>$(5.31 \times 10^{3} I^{2})$ | 3637.4   | 1 21 13                                       | $(5.90 \times 10^{3} \ 12)$                             | 3041.9     | 0.08.4                                       |
| $(5.31 \times 10^{3} \ 12)$                              | 3613.3   | 0.054 18                                      | $(5.91\times10^{-12})$<br>$(5.92\times10^{3})$          | 3079.8     | 0.007                                        |
| $(5.34 \times 10^3 \ 12)$                                | 3609.1   | 0.88 11                                       | $(5.)2\times 10^{3} 12)$                                | 2930.9     | 0.43.6                                       |
| $(5.35 \times 10^3 \ l^2)$                               | 3604.8   | 0.13.3                                        | $(6.02\times10^{-12})$<br>$(6.08\times10^{3})$          | 2950.9     | 0.09.3                                       |
| $(5.35 \times 10^3 \ I2)$                                | 3598.4   | 1 13 17                                       | $(6.09 \times 10^3 \ 12)$                               | 2856.2     | 0.070.24                                     |
| $(5.36 \times 10^3 \ 12)$                                | 3594.9   | 0.43.7                                        | $(6.12 \times 10^3 \ 12)$                               | 2827.95    | 1.86.17                                      |
| $(5.36 \times 10^3 \ 12)$                                | 3590.0   | 0.10 /                                        | $(6.12\times10^{3} 12)$                                 | 2730.6     | 0.11.3                                       |
| $(5.30\times10^{-12})$<br>$(5.37\times10^{3}$ 12)        | 3583.3   | 0.55.8                                        | $(6.22\times10^{3} 12)$                                 | 2718.06    | 0.9.3                                        |
| $(5.37 \times 10^3 \ 12)$                                | 3577.4   | 0.22.5                                        | $(6.27 \times 10^3 \ 12)$                               | 2678.0     | 1 44 12                                      |
| $(5.38 \times 10^3 \ 12)$                                | 3572.7   | 0.17.3                                        | $(6.28 \times 10^3 \ 12)$                               | 2674.6     | 1.49 13                                      |
| $(5.39 \times 10^3 \ 12)$                                | 3563.2   | 0.94 10                                       | $(6.35 \times 10^3 \ 12)$                               | 2597.63    | 1.03 15                                      |
| $(5.40 \times 10^3 \ 12)$                                | 3552.0   | 2.90 19                                       | $(6.36 \times 10^3 \ 12)$                               | 2589.9     | 1.20 15                                      |
| $(5.41 \times 10^3 \ 12)$                                | 3537.6   | 0.64 10                                       | $(6.39 \times 10^3 \ 12)$                               | 2561.09    | 2.4 6                                        |
| $(5.45 \times 10^3 \ 12)$                                | 3498.7   | 0.122 24                                      | $(6.56 \times 10^3 \ 12)$                               | 2386.79    | 1.0.5                                        |
| $(5.46 \times 10^3 \ 12)$                                | 3494 7   | 0.62.8                                        | $(6.72 \times 10^{3} \# 12)$                            | 2230.64    | 029                                          |
| $(5.47 \times 10^3 \ 12)$                                | 3481.8   | 0.128.24                                      | $(7.31 \times 10^3 I^2)$                                | 1637.61    | 7722                                         |
| $(5.47 \times 10^{3} 12)$                                | 3477.6   | 0.120 24                                      | (1.51×10 12)                                            | 1037.01    | 1.1 22                                       |
| $(3.77 \times 10^{-12})$                                 | 3477.0   | 0.21 J                                        | I                                                       |            |                                              |

#### $\epsilon, \beta^+$ radiations (continued)

<sup>†</sup> Deduced by evaluator from intensity balance. These feedings should be considered as approximate since there are probably many weak unobserved transitions as suggested by 2003Gi06 from the measured total absorption spectra.

<sup>‡</sup> Absolute intensity per 100 decays.

<sup>#</sup> Existence of this branch is questionable.

## $\gamma(^{102}\text{Cd})$

I $\gamma$  normalization: I( $\gamma$ +ce)(776.6)=100, no  $\varepsilon$ + $\beta^+$  feeding is expected to g.s. and no other ground-state  $\gamma$  transitions are reported. All transitions are assigned on the basis of  $\gamma\gamma$  coin data with gates on 777 $\gamma$  and 861 $\gamma$ . No direct transitions to g.s. were found beyond the first 2<sup>+</sup> state.

| $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\dagger @}$ | $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $\mathbf{E}_{f}$ | $\mathbf{J}_{f}^{\pi}$ | Comments                                             |
|------------------------|--------------------------|---------------|----------------------|------------------|------------------------|------------------------------------------------------|
| 156.7 2                | 3.84 8                   | 2718.06       | $(8^{+})$            | 2561.09          | $(6)^+$                |                                                      |
| 157.08                 | 0.140 20                 | 2561.09       | $(6)^{+}$            | 2402.8           |                        |                                                      |
| 266.5 6                | 0.16 3                   | 2827.95       |                      | 2561.09          | $(6)^{+}$              |                                                      |
| 271.7 7                | 0.80 5                   | 2674.6        |                      | 2402.8           |                        |                                                      |
| 287.8 10               | 1.08 10                  | 2674.6        |                      | 2386.79          | $(6^{+})$              |                                                      |
| 313.2 <i>I</i>         | 3.32 6                   | 2874.24       |                      | 2561.09          | $(6)^+$                |                                                      |
| 330.4 2                | 1.94 6                   | 2561.09       | $(6)^{+}$            | 2230.64          | 6+                     |                                                      |
| 352.6 8                | 0.27 5                   | 2386.79       | $(6^{+})$            | 2034.29          | $(5^+, 6^+)$           |                                                      |
| 368.5 6                | 0.33 6                   | 2402.8        |                      | 2034.29          | $(5^+, 6^+)$           |                                                      |
| 396.7 <i>1</i>         | 10.12 10                 | 2034.29       | $(5^+, 6^+)$         | 1637.61          | 4+                     |                                                      |
| 423.9 7                | 0.22 5                   | 2985.0        |                      | 2561.09          | $(6)^{+}$              |                                                      |
| 425.1 7                | 0.13 6                   | 2827.95       |                      | 2402.8           |                        |                                                      |
| 440.9 5                | 0.39 5                   | 2827.95       |                      | 2386.79          | $(6^{+})$              |                                                      |
| 469.4 8                | 0.070 24                 | 2856.2        |                      | 2386.79          | $(6^{+})$              |                                                      |
| 469.8 10               | 0.064 16                 | 3741.0        |                      | 3271.0           |                        | $I_{\gamma}$ : uncertainty of 11.0 seems a misprint. |
| 480.8 10               | 0.08 4                   | 3041.9        |                      | 2561.09          | $(6)^{+}$              |                                                      |
| 481.3 9                | 0.088 26                 | 2868.1        |                      | 2386.79          | $(6^{+})$              |                                                      |
| 487.6 <i>4</i>         | 1.71 8                   | 2718.06       | $(8^{+})$            | 2230.64          | 6+                     |                                                      |
| 487.6 8                | 0.15 4                   | 2874.24       |                      | 2386.79          | $(6^{+})$              |                                                      |
| 499.6 10               | 0.254 24                 | 3552.0        |                      | 3052.66          | 8+                     |                                                      |
| 500.0 20               | 0.11 3                   | 2730.6        |                      | 2230.64          | 6+                     |                                                      |
| 526.9 8                | 0.17 6                   | 2561.09       | $(6)^{+}$            | 2034.29          | $(5^+, 6^+)$           |                                                      |
| 540.7 10               | 0.034 10                 | 4103.9        |                      | 3563.2           |                        |                                                      |
| 563.0 3                | 0.99 5                   | 2597.63       |                      | 2034.29          | $(5^+, 6^+)$           |                                                      |
| 567.9 4                | 0.70 4                   | 3128.9        |                      | 2561.09          | $(6)^{+}$              |                                                      |
| 575.73                 | 1.11 4                   | 3449.67       |                      | 2874.24          |                        |                                                      |
| 576.3 10               | 0.14 3                   | 3847.3        | <+                   | 3271.0           | 4+                     |                                                      |
| 593.0 1                | 31.0 0                   | 2230.64       | 6'                   | 1637.61          | 4'                     |                                                      |
| 595.5 5                | 0.14 5                   | 3804.3        |                      | 32/1.0           | <i>(</i> +             |                                                      |
| 597.4 8                | 0.19 0                   | 2827.95       |                      | 2230.04          | 0                      |                                                      |
| 612 5 6                | 0.152 20                 | 2508 4        |                      | 2085.0           |                        |                                                      |
| 640.2.10               | 0.140 20                 | 3011 5        |                      | 2985.0           |                        |                                                      |
| 644.2.10               | $0.038\ 20$              | 2874 24       |                      | 2220.64          | 6+                     |                                                      |
| 667.0.7                | 0.15 4                   | 2074.24       |                      | 2561.09          | $(6)^+$                |                                                      |
| 676 5 20               | 0.29 + 0.99 14           | 3552.0        |                      | 2301.07          | (0)                    |                                                      |
| 684 1 3                | 0.95 5                   | 2718.06       | $(8^{+})$            | 2071.21          | $(5^+ 6^+)$            |                                                      |
| 688.9.3                | 0.78 5                   | 3563.2        | (0)                  | 2874 24          | (5,0)                  |                                                      |
| 696 1 7                | 0.23.3                   | 3098.9        |                      | 2402.8           |                        |                                                      |
| 696.7 4                | 0.35 6                   | 4085.9        |                      | 3389.2           |                        |                                                      |
| 700.3.5                | 0.43 6                   | 2930.9        |                      | 2230.64          | 6+                     |                                                      |
| 700.5 3                | 0.46 5                   | 3753.0        |                      | 3052.66          | 8+                     |                                                      |
| 703.9 8                | 0.20 4                   | 3422.2        |                      | 2718.06          | $(8^+)$                |                                                      |
| 706.4 20               | 0.14 3                   | 3268.1        |                      | 2561.09          | $(6)^{+}$              |                                                      |
| 709.1 20               | 0.55 8                   | 3583.3        |                      | 2874.24          | (-)                    |                                                      |
| 712.3 20               | 0.070 14                 | 4162.0        |                      | 3449.67          |                        |                                                      |
| 723.7 20               | 0.98 16                  | 3598.4        |                      | 2874.24          |                        |                                                      |
| 723.8 20               | 0.100 20                 | 4175.8        |                      | 3449.67          |                        |                                                      |
| 742.4 3                | 0.46 4                   | 3128.9        |                      | 2386.79          | $(6^{+})$              |                                                      |
| 749.2 2                | 13.0 <i>3</i>            | 2386.79       | (6+)                 | 1637.61          | 4+                     |                                                      |

# $\gamma(^{102}\text{Cd})$ (continued)

| $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\dagger @}$ | $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $E_f$   | $\mathrm{J}_f^\pi$ |
|------------------------|--------------------------|---------------|----------------------|---------|--------------------|
| 762.9 20               | 0.094 24                 | 3149.7        |                      | 2386.79 | (6 <sup>+</sup> )  |
| 763.5 7                | 0.064 20                 | 4034.6        |                      | 3271.0  |                    |
| 763.7 20               | 0.128 24                 | 3481.8        |                      | 2718.06 | $(8^{+})$          |
| 765.1 9                | 0.14 3                   | 3750.1        |                      | 2985.0  |                    |
| 765.3 6                | 2.58 5                   | 2402.8        |                      | 1637.61 | 4+                 |
| 776.6 1                | 100.0 20                 | 776.61        | $2^{+}$              | 0.0     | $0^{+}$            |
| 793.7 2                | 1.89 10                  | 2827.95       |                      | 2034.29 | $(5^+, 6^+)$       |
| 800.7 9                | 0.120 24                 | 4071.7        |                      | 3271.0  |                    |
| 810.4 6                | 0.086 26                 | 3197.2        |                      | 2386.79 | (6 <sup>+</sup> )  |
| 822.0 2                | 4.50 12                  | 3052.66       | $8^{+}$              | 2230.64 | 6+                 |
| 824.0 7                | 0.33 6                   | 3385.1        |                      | 2561.09 | $(6)^{+}$          |
| 828.4 9                | 0.26 5                   | 3389.2        |                      | 2561.09 | $(6)^{+}$          |
| 842.1 20               | 0.12 3                   | 3072.7        |                      | 2230.64 | 6+                 |
| 851.4 <i>3</i>         | 0.40 6                   | 3449.67       |                      | 2597.63 |                    |
| 854.3 10               | 0.068 20                 | 3572.7        |                      | 2718.06 | (8 <sup>+</sup> )  |
| 861.0 <i>1</i>         | 100 2                    | 1637.61       | 4+                   | 776.61  | 2+                 |
| 873.9 20               | 0.134 16                 | 3276.9        |                      | 2402.8  |                    |
| 876.6 20               | 0.180 20                 | 3263.4        |                      | 2386.79 | $(6^{+})$          |
| 876.6 5                | 0.132 26                 | 4147.0        |                      | 3271.0  |                    |
| 884.6 <i>4</i>         | 1.58 6                   | 3271.0        |                      | 2386.79 | (6 <sup>+</sup> )  |
| 884.8 20               | 0.20 4                   | 3115.4        |                      | 2230.64 | 6+                 |
| 885.5 9                | 0.24 3                   | 4335.2        |                      | 3449.67 | (C)+               |
| 889.1 /                | 0.15 4                   | 3449.67       |                      | 2561.09 | (6)                |
| 890.3 8                | 0.16 3                   | 4453.6        |                      | 3363.2  | < <sup>+</sup>     |
| 898.0 10               | 0.434                    | 3128.9        |                      | 2230.04 | (8+)               |
| 919.0 J                | 0.052 I2                 | 2561.00       | $(6)^{+}$            | 2/18.00 | $(8^{+})$          |
| 923.51                 | 0 15 3                   | 3976.3        | (0)                  | 3052.66 | 4<br>8+            |
| 933.8.6                | 0.15 5                   | 3494 7        |                      | 2561.09 | $(6)^+$            |
| 947 4 4                | 0.45.6                   | 3537.6        |                      | 2589.9  | (0)                |
| 952.4 8                | 2.40 6                   | 2589.9        |                      | 1637.61 | 4+                 |
| 954.9 5                | 0.058 20                 | 3829.5        |                      | 2874.24 |                    |
| 959.9 2                | 0.91 9                   | 2597.63       |                      | 1637.61 | 4+                 |
| 962.6 6                | 0.192 18                 | 4015.3        |                      | 3052.66 | 8+                 |
| 963.1 6                | 0.15 5                   | 3193.7        |                      | 2230.64 | 6+                 |
| 977.5 8                | 0.12 3                   | 4680.3        |                      | 3702.9  |                    |
| 977.9 4                | 0.50 8                   | 4427.6        |                      | 3449.67 |                    |
| 987.0 6                | 0.85 6                   | 4039.7        |                      | 3052.66 | 8+                 |
| 987.0 10               | 0.084 16                 | 4689.8        |                      | 3702.9  |                    |
| 987.7 7                | 0.33 5                   | 3218.3        |                      | 2230.64 | 6+                 |
| 990.4 9                | 0.11 3                   | 3552.0        |                      | 2561.09 | (6)+               |
| 994.5 7                | 0.21 4                   | 3381.3        |                      | 2386.79 | (6+)               |
| 994.5 5                | <0.086                   | 4265.63       |                      | 32/1.0  | (E+(C+))           |
| 995.5 10               | 0.273                    | 3029.8        |                      | 2034.29 | (5',6')            |
| 997.910                | 0.34 8                   | 3228.8        |                      | 2230.04 | $(6)^+$            |
| 1002.1 10              | 0.128 I2<br>0.124 I2     | 3380.2        |                      | 2301.09 | (6)                |
| 1002.5 5               | 0.124 12<br>0.27 3       | 3058.6        |                      | 2034 20 | $(5^+ 6^+)$        |
| 1024.5 10              | 0.273<br>0.124           | 3594 9        |                      | 2561.09 | $(5,0)^+$          |
| 1034.7 4               | 0.204                    | 3753.0        |                      | 2718.06 | $(8^+)$            |
| 1035.7 7               | 0.10.3                   | 3422.2        |                      | 2386.79 | $(6^+)$            |
| 1037.6 6               | 0.35 6                   | 4022.3        |                      | 2985.0  | <- /               |
| 1038.3 6               | 2.51 12                  | 3268.1        |                      | 2230.64 | 6+                 |
| 1040.4 7               | 1.44 12                  | 2678.0        | (6 <sup>+</sup> )    | 1637.61 | 4+                 |
| 1045.9 8               | 0.66 10                  | 3920.1        |                      | 2874.24 |                    |
| 1064.6 10              | 0.14 3                   | 4453.6        |                      | 3389.2  |                    |

## $\gamma(^{102}\text{Cd})$ (continued)

| $E_{\gamma}^{\dagger}$                   | $I_{\gamma}^{\dagger @}$              | $E_i$ (level) $J_i^{\pi}$ | $\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$ | $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\dagger @}$ | E <sub>i</sub> (level) | $E_f$   | $\mathrm{J}_f^\pi$      |
|------------------------------------------|---------------------------------------|---------------------------|------------------------------------------|------------------------|--------------------------|------------------------|---------|-------------------------|
| 1064.9 9                                 | 0.14 5                                | 3449.67                   | 2386.79 (6 <sup>+</sup> )                | 1391.6 4               | 0.43 6                   | 4265.63                | 2874.24 |                         |
| 1065.9 10                                | 0.43 5                                | 3894.4                    | 2827.95                                  | 1395.1 10              | 0.15 4                   | 3780.5                 | 2386.79 | $(6^{+})$               |
| 1079.1 8                                 | 0.066 20                              | 3907.1                    | 2827.95                                  | 1401.2 10              | 0.15 4                   | 3961.7                 | 2561.09 | $(6)^{+}$               |
| 1136.0 <i>3</i>                          | 0.22 4                                | 4525.3                    | 3389.2                                   | 1407.3 5               | 0.31 6                   | 3637.4                 | 2230.64 | 6+                      |
| 1136.8 7                                 | 0.51 3                                | 4189.5                    | 3052.66 8+                               | 1416.6 8               | 0.50 4                   | 3449.67                | 2034.29 | $(5^+, 6^+)$            |
| 1142.4 6                                 | 0.40 4                                | 3702.9                    | 2561.09 (6)+                             | 1417.9 5               | 0.34 6                   | 3649.0                 | 2230.64 | 6+                      |
| 1144.4 20                                | 0.030 12                              | 4197.2                    | 3052.66 8+                               | 1424.3 20              | 0.22 4                   | 4142.4                 | 2718.06 | $(8^{+})$               |
| 1147.4 10                                | 0.73 12                               | 4022.3                    | 2874.24                                  | 1426.2 20              | 0.12 4                   | 3829.5                 | 2402.8  |                         |
| 1150.4 20                                | 0.22 3                                | 3552.0                    | 2402.8                                   | 1428.5 9               | 0.18 4                   | 3989.6                 | 2561.09 | $(6)^{+}$               |
| 1152.2 <sup>a</sup> 10                   | 0.38 <sup>a</sup> 6                   | 3537.6                    | 2386.79 (6 <sup>+</sup> )                | 1437.5 <i>3</i>        | 0.288 14                 | 4311.7                 | 2874.24 |                         |
| 1152.2 <sup>a</sup> 10                   | 0.118 <sup><i>a</i></sup> 24          | 4206.2                    | 3052.66 8+                               | 1437.8 6               | 0.13 <i>3</i>            | 4265.63                | 2827.95 |                         |
| 1158.6 10                                | 0.150 24                              | 3389.2                    | 2230.64 6+                               | 1438.1 4               | 0.54 8                   | 3999.2                 | 2561.09 | $(6)^{+}$               |
| 1162.9 7                                 | 0.35 8                                | 3197.2                    | 2034.29 (5+,6+)                          | 1443.3 10              | 0.21 3                   | 3477.6                 | 2034.29 | $(5^+, 6^+)$            |
| 1165.9 10                                | 0.12 4                                | 3552.0                    | 2386.79 (6 <sup>+</sup> )                | 1454.5 8               | 0.082 20                 | 4282.8                 | 2827.95 |                         |
| 1171.0 20                                | 0.100 20                              | 3572.7                    | 2402.8                                   | 1460.9 20              | 0.18 4                   | 4048.9                 | 2589.9  |                         |
| 1176.6 10                                | 0.092 26                              | 3563.2                    | 2386.79 (6 <sup>+</sup> )                | 1464.4 20              | 0.122 24                 | 3498.7                 | 2034.29 | $(5^+, 6^+)$            |
| 1185.8 20                                | 0.15 3                                | 3590.0                    | 2402.8                                   | 1465.2 8               | 0.048 16                 | 4182.8                 | 2718.06 | (8 <sup>+</sup> )       |
| 1191.5 9                                 | 0.19 5                                | 3422.2                    | 2230.64 6+                               | 1466.0 4               | 0.35 6                   | 4340.2                 | 2874.24 |                         |
| 1207.4 8                                 | 0.056 20                              | 3594.9                    | 2386.79 (6 <sup>+</sup> )                | 1466.4 8               | 0.18 3                   | 4915.6                 | 3449.67 |                         |
| 1208.3 10                                | 0.052 18                              | 4479.3                    | 3271.0                                   | 1466.9 10              | 0.13 4                   | 4028.0                 | 2561.09 | $(6)^{+}$               |
| 1210.6 10                                | 0.060 20                              | 5064.8                    | 3853.5                                   | 1471.6 20              | 0.088 26                 | 4739.7                 | 3271.0  |                         |
| 1211.8 8                                 | 0.056 18                              | 4265.63                   | 3052.66 8+                               | 1473.1 6               | 0.052 12                 | 5175.6                 | 3702.9  |                         |
| 1222.4 4                                 | 0.20 6                                | 3609.1                    | 2386.79 (6 <sup>+</sup> )                | 1476.1 20              | 0.21 4                   | 4528.8                 | 3052.66 | 8+                      |
| 1230.5 9                                 | 0.23 4                                | 4680.3                    | 3449.67                                  | 1487.8 <i>3</i>        | 1.07 10                  | 4048.9                 | 2561.09 | $(6)^{+}$               |
| 1232.8 7                                 | 0.19 4                                | 3268.1                    | 2034.29 (5+,6+)                          | 1488.2 6               | 1.61 10                  | 4206.2                 | 2718.06 | $(8^{+})$               |
| 1236.6 20                                | 3.51 24                               | 2874.24                   | 1637.61 4+                               | 1488.5 9               | 0.054 18                 | 5040.7                 | 3552.0  |                         |
| 1239.7 9                                 | 0.16 4                                | 4628.9                    | 3389.2                                   | 1491.1 <i>10</i>       | 0.11 3                   | 3877.4                 | 2386.79 | (6+)                    |
| 1243.7 10                                | 0.19 6                                | 3276.9                    | 2034.29 (5+,6+)                          | 1492.2 10              | 0.10 3                   | 3894.4                 | 2402.8  |                         |
| 1244.0 10                                | 0.20 6                                | 3805.6                    | 2561.09 (6)+                             | 1493.6 9               | 1.13 8                   | 3724.0                 | 2230.64 | 6+                      |
| 1246.8 5                                 | 0.09 4                                | 3649.0                    | 2402.8                                   | 1510.3 7               | 0.18 6                   | 4071.7                 | 2561.09 | $(6)^{+}$               |
| 1251.2 20                                | 0.11 4                                | 3637.4                    | 2386.79 (6+)                             | 1510.4 4               | 0.55 6                   | 3741.0                 | 2230.64 | 6+                      |
| 1256.6 7                                 | 0.12 3                                | 4131.2                    | 2874.24                                  | 1517.5 6               | 0.106 24                 | 4906.7                 | 3389.2  |                         |
| 1263.4 10                                | 0.21 5                                | 3494.7                    | 2230.64 6+                               | 1519.3 <i>10</i>       | 0.20 6                   | 3552.0                 | 2034.29 | $(5^+, 6^+)$            |
| 1276.8 20                                | 0.09 4                                | 3874.4                    | 2597.63                                  | 1519.3 9               | 0.018 8                  | 5702.1                 | 4182.8  |                         |
| 1304.4 20                                | 0.062 16                              | 4754.3                    | 3449.67                                  | 1524.1 4               | 0.59 3                   | 3911.5                 | 2386.79 | $(6^{+})$               |
| 1304.7 9                                 | 0.088 18                              | 3339.0                    | 2034.29 (5+,6+)                          | 1525.5 20              | 0.032 24                 | 4085.9                 | 2561.09 | $(6)^{+}$               |
| 1305.3 10                                | 0.088 14                              | 4357.9                    | 3052.66 8+                               | 1527.1 20              | 0.14 3                   | 3563.2                 | 2034.29 | $(5^+, 6^+)$            |
| 1311.5 10                                | 0.024 20                              | 4582.0                    | 3271.0                                   | 1534.3 10              | < 0.10                   | 4981.8                 | 3449.67 |                         |
| 1315.4 20                                | 0.096 24                              | 4368.1                    | 3052.66 8+                               | 1534.6 5               | 0.22 3                   | 5237.5                 | 3702.9  |                         |
| 1321.4 3                                 | 1.27 8                                | 3552.0                    | 2230.64 6*                               | 1536.3 10              | 0.072 20                 | 3938.1                 | 2402.8  |                         |
| 1332.5 4                                 | 0.63 10                               | 4206.2                    | 2874.24                                  | 1543.1 10              | 0.13 4                   | 3577.4                 | 2034.29 | (5',6')                 |
| 1336.6 20                                | 0.22 4                                | 3370.9                    | 2034.29 (5',6')                          | 1548.8 10              | 0.060 20                 | 4601.1                 | 3052.66 | 8'                      |
| 1346.2 20                                | 0.15 4                                | 3907.1                    | 2561.09 (6)                              | 1549.3 20              | 0.1/5                    | 4821.1                 | 32/1.0  | ((+)                    |
| 1346.6 20                                | 0.090 22                              | 3577.4                    | 2230.64 6                                | 1550.78                | 0.060 24                 | 3938.1                 | 2386.79 | (6')                    |
| 1346.6 8                                 | 0.16.3                                | 4/35.8                    | 3389.2<br>2024.20 (5± (±)                | 1555.4 0               | 0.054 18                 | 5107.4                 | 3552.0  | (z + (z + ))            |
| 1354.4 10                                | 0.43 8                                | 3389.2                    | $2034.29(5^+,6^+)$                       | 1557.0.20              | 0.046 18                 | 3590.0                 | 2034.29 | (5',6')                 |
| 1354.4 10                                | 0.16 3                                | 3/41.0                    | 2386.79 (6')                             | 1559.0 0               | 0.43 0                   | 3961.7                 | 2402.8  | (z + (z + ))            |
| 1354.4 /                                 | 0.12 4                                | 4227.9                    | 28/4.24                                  | 1570.5 20              | 0.128 20                 | 3004.8                 | 2034.29 | (5, 0)                  |
| 1303.2 10                                | 0.18 5                                | 4410.0                    | $3032.00 8^{+}$                          | 1575.0 9               | $0.25 \ 3$               | 3805.0                 | 2230.04 | $(5^+ 6^+)$             |
| 1304.0 20                                | 0.23 3                                | 3394.9                    | 2230.04 0                                | 1579.0 20              | 0.034 10                 | 2820 5                 | 2034.29 | (3,0)                   |
| 13/3.30                                  | 0.59 8                                | 4300.0                    | 2903.0<br>2230.64 6+                     | 1399.04                | 0.34 14                  | 3029.3<br>3640 0       | 2230.04 | $(5^+ 6^+)$             |
| 1370.3 3                                 | 0.327                                 | 3402.1                    | 2230.04 0<br>2034 20 (5+ 6+)             | 1672 0 20              | 0.3+3<br>0.41.10         | 2852 5                 | 2034.29 | (J,0)<br>6 <sup>+</sup> |
| 1307.+20<br>1387.7 <sup><i>a</i></sup> 5 | 0.254<br>0.072 <sup><i>a</i></sup> 24 | 5570 5                    | 2034.27 (J ,0 )<br>1182.8                | 1620.0.20              | 0.41 10                  | 3268 1                 | 1637.61 | 0<br>4 <sup>+</sup>     |
| 1307.70                                  | 0.072 24<br>0.070 <i>a</i> 24         | 5670.0                    | 7102.0                                   | 1644 6 0               | 0.38 10                  | 1206.1                 | 2561.00 | $(6)^+$                 |
| 1301.1 2                                 | 0.070 24                              | 3052.2                    | 7202.0<br>2561.00 (6) <sup>+</sup>       | 1646.8 4               | 1.00 14                  | +200.2<br>3877 A       | 2301.09 | (0)<br>6 <sup>+</sup>   |
| 1391.1 0                                 | 0.27 3                                | 3932.2                    | 2301.09 (0)                              | 1040.8 4               | 1.00 14                  | 30//.4                 | 2230.04 | 0                       |

# $\gamma(^{102}\text{Cd})$ (continued)

| $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\dagger @}$ | $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $E_f$   | $\mathrm{J}_f^\pi$ |
|------------------------|--------------------------|---------------|----------------------|---------|--------------------|
| 1647.8 8               | 0.34 4                   | 4034.6        |                      | 2386.79 | $(6^+)$            |
| 1648.6.4               | 0.098.20                 | 4777.3        |                      | 3128.9  | (-)                |
| 1655.1 20              | 0.072 20                 | 3689.4        |                      | 2034.29 | $(5^+, 6^+)$       |
| 1659.3 10              | 0.058 20                 | 4377.4        |                      | 2718.06 | $(8^+)$            |
| 1661.6.20              | 0.076 26                 | 4048.9        |                      | 2386.79 | $(6^+)$            |
| 1666.3.8               | 0.14 4                   | 4227.9        |                      | 2561.09 | $(6)^+$            |
| 1668.2.20              | 0.11 4                   | 3702.9        |                      | 2034.29 | $(5^+, 6^+)$       |
| 1668 2 10              | 0 14 4                   | 4497 1        |                      | 2827.95 | (0,0)              |
| 1682.3 10              | 0.072.24                 | 5071.6        |                      | 3389.2  |                    |
| 1682.6 7               | 0.64 10                  | 3911.5        |                      | 2230.64 | 6+                 |
| 1685.2.7               | 0.27.3                   | 4071.7        |                      | 2386.79 | $(6^+)$            |
| 1685.3.9               | 0.106.24                 | 4088.1        |                      | 2402.8  | (-)                |
| 1687.0 9               | 0.084 24                 | 4739.7        |                      | 3052.66 | 8+                 |
| 1691.5 4               | 0.092 24                 | 5141.2        |                      | 3449.67 |                    |
| 1695.6 10              | 0.042 16                 | 4082.4        |                      | 2386.79 | $(6^{+})$          |
| 1704.7 20              | 0.18 8                   | 4265.63       |                      | 2561.09 | $(6)^+$            |
| 1716.5 5               | 0.084 20                 | 4845.5        |                      | 3128.9  | (-)                |
| 1730.7 7               | 0.23 5                   | 3961.7        |                      | 2230.64 | 6+                 |
| 1734.6 9               | 0.20 4                   | 4121.4        |                      | 2386.79 | $(6^{+})$          |
| 1736.2 10              | 0.10 3                   | 5273.8        |                      | 3537.6  |                    |
| 1743.7 8               | 0.048 16                 | 5621.2        |                      | 3877.4  |                    |
| 1744.2 5               | 0.062 20                 | 5193.9        |                      | 3449.67 |                    |
| 1744.9 9               | 0.21 4                   | 4131.2        |                      | 2386.79 | $(6^{+})$          |
| 1745.3 8               | 0.062 10                 | 3780.5        |                      | 2034.29 | $(5^+, 6^+)$       |
| 1745.9 10              | 0.068 18                 | 6057.6        |                      | 4311.7  |                    |
| 1751.2 8               | 1.296 16                 | 3389.2        |                      | 1637.61 | 4+                 |
| 1754.6 20              | 0.038 12                 | 6066.3        |                      | 4311.7  |                    |
| 1760.4 20              | 0.11 4                   | 5149.7        |                      | 3389.2  |                    |
| 1761.4 20              | 0.14 4                   | 4147.0        |                      | 2386.79 | (6 <sup>+</sup> )  |
| 1771.4 6               | 0.40 8                   | 3805.6        |                      | 2034.29 | $(5^+, 6^+)$       |
| 1771.4 20              | 0.29 6                   | 4446.0        |                      | 2674.6  |                    |
| 1780.1 5               | 0.12 3                   | 4182.8        |                      | 2402.8  |                    |
| 1789.6 10              | 0.10 3                   | 4175.8        |                      | 2386.79 | $(6^{+})$          |
| 1795.3 10              | 0.36 6                   | 3829.5        |                      | 2034.29 | $(5^+, 6^+)$       |
| 1813.3 20              | 0.55 8                   | 3449.67       |                      | 1637.61 | 4+                 |
| 1816.3 20              | 0.04 4                   | 4689.8        |                      | 2874.24 |                    |
| 1818.4 9               | 0.066 20                 | 4206.2        |                      | 2386.79 | $(6^{+})$          |
| 1821.0 8               | 0.096 24                 | 4224.1        |                      | 2402.8  |                    |
| 1841.1 <i>4</i>        | 0.60 10                  | 4071.7        |                      | 2230.64 | 6+                 |
| 1854.9 5               | 0.49 7                   | 4416.0        |                      | 2561.09 | $(6)^{+}$          |
| 1855.7 20              | 0.11 3                   | 4242.5        |                      | 2386.79 | (6 <sup>+</sup> )  |
| 1865.7 20              | 0.13 4                   | 4252.7        |                      | 2386.79 | (6+)               |
| 1878.8 <i>3</i>        | 1.36 8                   | 4265.63       |                      | 2386.79 | (6 <sup>+</sup> )  |
| 1881.1 20              | 0.066 20                 | 5420.7        |                      | 3537.6  |                    |
| 1883.0 4               | 0.33 6                   | 4601.1        |                      | 2718.06 | (8 <sup>+</sup> )  |
| 1883.9 <i>5</i>        | 0.044 14                 | 6195.6        |                      | 4311.7  |                    |
| 1895.8 8               | 0.27 3                   | 4282.8        |                      | 2386.79 | $(6^{+})$          |
| 1899.9 <i>10</i>       | 0.042 20                 | 5175.6        |                      | 3276.9  |                    |
| 1900.7 <i>10</i>       | 0.024 8                  | 6083.5        |                      | 4182.8  |                    |
| 1916.1 <i>3</i>        | 0.50 10                  | 4147.0        |                      | 2230.64 | 6+                 |
| 1926.7 10              | 0.050 12                 | 5489.2        |                      | 3563.2  |                    |
| 1926.9 20              | 0.15 6                   | 3563.2        |                      | 1637.61 | 4+                 |
| 1936.4 9               | 0.040 12                 | 5064.8        |                      | 3128.9  | - 1                |
| 1942.2 10              | 0.27 5                   | 2718.06       | $(8^{+})$            | 776.61  | 2+                 |
| 1943.8 10              | 0.038 12                 | 6225.9        |                      | 4282.8  | <                  |
| 1951.1 10              | 0.24 8                   | 4182.8        |                      | 2230.64 | 6+                 |

## $\gamma(^{102}\text{Cd})$ (continued)

| $E_{\gamma}^{\dagger}$     | $I_{\gamma}^{\dagger @}$     | $E_i$ (level) $J_i^{\pi}$ | $E_f \qquad J_f^{\pi}$                    | $E_{\gamma}^{\dagger}$        | $I_{\gamma}^{\dagger @}$   | E <sub>i</sub> (level) | $E_f$   | ${ m J}_f^\pi$ |
|----------------------------|------------------------------|---------------------------|-------------------------------------------|-------------------------------|----------------------------|------------------------|---------|----------------|
| 1951.1 20                  | 0.08.8                       | 4512.8                    | 2561.09 (6) <sup>+</sup>                  | 2300.0 10                     | 0.13 3                     | 5175.6                 | 2874.24 |                |
| 1971.2 20                  | 0.16 6                       | 3609.1                    | $1637.61 4^+$                             | 2302.6 10                     | 0.054 18                   | 4689.8                 | 2386.79 | $(6^{+})$      |
| 1975.3 7                   | 0.12 4                       | 4206.2                    | 2230.64 6+                                | 2320.1 10                     | 0.028 10                   | 5857.8                 | 3537.6  | (0)            |
| 1982.9 7                   | 0.11.3                       | 4385.7                    | 2402.8                                    | 2322.9 20                     | 0.07 4                     | 3961.7                 | 1637.61 | 4+             |
| 1996.9 7                   | 0.16 4                       | 4227.9                    | 2230.64 6+                                | 2334.8 20                     | 0.008 8                    | 4720.9                 | 2386.79 | $(6^+)$        |
| 1998.8.5                   | 0.76 10                      | 3637.4                    | $1637.61 4^+$                             | 2345.5 10                     | 0.044 14                   | 5909.2                 | 3563.2  | (•)            |
| 1998.8 9                   | 0.26 8                       | 4385.7                    | $2386.79(6^+)$                            | 2348.4 20                     | 0.18 6                     | 4909.6                 | 2561.09 | $(6)^{+}$      |
| 1998.8 20                  | 0.14 4                       | 4716.9                    | $2718.06(8^+)$                            | 2348.4 10                     | 0.12 4                     | 5399.1                 | 3052.66 | 8+             |
| 2008.2 9                   | 0.20.5                       | 4569.3                    | $2561.09(6)^+$                            | 2350.0.5                      | 0.15 4                     | 5068.1                 | 2718.06 | $(8^+)$        |
| 2008.8 10                  | 0.032 10                     | 6320.5                    | 4311.7                                    | 2353.0 20                     | 0.13 3                     | 4582.0                 | 2230.64 | 6+             |
| 2021.3 10                  | 0.36 8                       | 4739.7                    | $2718.06(8^+)$                            | 2359.4 20                     | 0.064 22                   | 5909.2                 | 3552.0  |                |
| 2022.0 10                  | 0.32 6                       | 4582.0                    | $2561.09(6)^+$                            | 2363.6 10                     | 0.19 6                     | 4925.0                 | 2561.09 | $(6)^{+}$      |
| 2022.2 20                  | 0.15 3                       | 4252.7                    | 2230.64 6+                                | 2369.5 20                     | 0.15 4                     | 4601.1                 | 2230.64 | 6+             |
| 2035.0 5                   | 0.80 14                      | 4265.63                   | 2230.64 6+                                | 2389.5 7                      | 0.082 26                   | 4777.3                 | 2386.79 | $(6^{+})$      |
| 2037.5 10                  | 0.10 3                       | 4424.3                    | 2386.79 (6 <sup>+</sup> )                 | 2409.4 8                      | 0.14 5                     | 5127.5                 | 2718.06 | (8+)           |
| 2053.3 20                  | 0.038 12                     | 5182.3                    | 3128.9                                    | 2419.1 20                     | 0.18 6                     | 4981.8                 | 2561.09 | $(6)^{+}$      |
| 2065.1 20                  | 0.030 10                     | 5193.9                    | 3128.9                                    | 2437.2 20                     | 0.14 5                     | 4668.9                 | 2230.64 | 6+             |
| 2065.5 20                  | 0.08 <i>3</i>                | 3702.9                    | 1637.61 4+                                | 2454.6 10                     | 0.23 5                     | 4685.3                 | 2230.64 | 6+             |
| 2079.4 6                   | 0.064 20                     | 4640.5                    | 2561.09 (6)+                              | 2461.0 20                     | 0.18 6                     | 5022.1                 | 2561.09 | $(6)^{+}$      |
| 2079.9 <sup>a</sup> 20     | 0.040 <sup>a</sup> 12        | 4668.9                    | 2589.9                                    | 2482.9 10                     | 0.056 18                   | 4886.4                 | 2402.8  |                |
| 2079.9 <sup>a</sup> 20     | 0.032 <sup><i>a</i></sup> 12 | 4754.3                    | 2674.6                                    | 2500.3 10                     | 0.048 24                   | 5175.6                 | 2674.6  |                |
| 2080.8 20                  | 0.18 4                       | 4311.7                    | 2230.64 6+                                | 2508.5 8                      | 0.38 9                     | 4739.7                 | 2230.64 | 6+             |
| 2082.2 10                  | 0.032 12                     | 5934.5                    | 3853.5                                    | 2528.6 <sup>#</sup> 10        | 0.17 <sup>#</sup> 5        | 4915.6                 | 2386.79 | (6+)           |
| 2085.2 20                  | 0.040 20                     | 3724.0                    | 1637.61 4+                                | 2528.6 <sup>#</sup> 20        | 0.17 <sup>#</sup> 6        | 5246.2                 | 2718.06 | $(8^{+})$      |
| 2095.9 20                  | 0.11 3                       | 4497.1                    | 2402.8                                    | 2544.3 10                     | 0.14 4                     | 5105.4                 | 2561.09 | $(6)^{+}$      |
| 2098.1 20                  | 0.15 6                       | 3735.7                    | 1637.61 4+                                | 2559.6 20                     | 0.026 20                   | 4197.2                 | 1637.61 | 4+             |
| 2102.0 20                  | 0.24 5                       | 4332.7                    | 2230.64 6+                                | 2569.3 10                     | 0.048 16                   | 5396.6                 | 2827.95 |                |
| 2103.1 8                   | 0.33 5                       | 4821.1                    | 2718.06 (8 <sup>+</sup> )                 | 2578.4 8                      | 0.096 24                   | 4981.8                 | 2402.8  |                |
| 2103.4 5                   | 0.33 8                       | 4664.5                    | 2561.09 (6)+                              | 2614.4 9                      | 0.060 20                   | 5332.5                 | 2718.06 | (8+)           |
| 2120.0 9                   | 0.094 24                     | 5670.9                    | 3552.0                                    | 2615.3 20                     | 0.24 5                     | 4845.5                 | 2230.64 | 6+             |
| 2127.1 10                  | 0.17 4                       | 4357.9                    | 2230.64 6+                                | 2638.9 6                      | 0.64 12                    | 5691.7                 | 3052.66 | 8+             |
| 2142.2 8                   | 0.38 8                       | 4739.7                    | 2597.63                                   | 2641.4 7                      | 0.79 14                    | 4872.1                 | 2230.64 | 6+             |
| 2142.3 6                   | 0.51 8                       | 4373.0                    | 2230.64 6+                                | 2679.7 20                     | 0.35 8                     | 4909.6                 | 2230.64 | 6+             |
| 2148.3 <sup>a</sup> 10     | 0.058 <sup>a</sup> 16        | 4182.8                    | 2034.29 (5+,6+)                           | 2699.4 <sup>#</sup> 20        | 0.35 <sup>#</sup> 8        | 4930.1                 | 2230.64 | 6+             |
| 2148.3 <sup>a</sup> 10     | 0.21 <sup><i>a</i></sup> 5   | 4709.4                    | 2561.09 (6)+                              | 2699.4 6                      | 0.35 12                    | 5752.7                 | 3052.66 | 8+             |
| 2149.3 9                   | 0.07 3                       | 4536.4                    | 2386.79 (6+)                              | 2702.6 20                     | 0.070 20                   | 5420.7                 | 2718.06 | $(8^{+})$      |
| 2154.9 10                  | 0.29 6                       | 4385.7                    | 2230.64 6+                                | 2714.9 20                     | 0.026 10                   | 6418.6                 | 3702.9  |                |
| 2159.0 20                  | 0.16 6                       | 4720.9                    | 2561.09 (6)+                              | 2717.3 10                     | 0.09 4                     | 5435.9                 | 2718.06 | $(8^{+})$      |
| 2168.4 20                  | 0.08 3                       | 3805.6                    | 1637.61 4+                                | 2726.4 20                     | 0.046 20                   | 4360.6                 | 1637.61 | 4+             |
| 2178.4 10                  | 0.18 6                       | 4739.7                    | 2561.09 (6)+                              | 2743.7 10                     | 0.10 3                     | 5130.5                 | 2386.79 | $(6^{+})$      |
| 2185.3 4                   | 0.30 4                       | 4416.0                    | 2230.64 6+                                | 2744.6 10                     | 0.05 18                    | 5797.3                 | 3052.66 | 8+             |
| 2187.5 5                   | 0.16 8                       | 4777.3                    | 2589.9                                    | 2748.3 8                      | 0.51 10                    | 4385.7                 | 1637.61 | 4+             |
| 2190.2 10                  | 0.10 4                       | 4224.1                    | 2034.29 (5 <sup>+</sup> ,6 <sup>+</sup> ) | 2750.4 9                      | 0.56 12                    | 4981.8                 | 2230.64 | 6+             |
| 2190.7 5                   | 0.108 20                     | 5175.6                    | 2985.0                                    | 2758.9 20                     | 0.036 16                   | 5811.6                 | 3052.66 | 8+             |
| 2192.6 20                  | 0.064 22                     | 3829.5                    | 1637.61 4+                                | 2779.4 20                     | 0.05 16                    | 4416.0                 | 1637.61 | 4+             |
| 2193.0 10                  | 0.030 10                     | 4582.0                    | 2386.79 (6 <sup>+</sup> )                 | 2785.6 20                     | 0.046 16                   | 3563.2                 | 776.61  | $2^{+}$        |
| 2206.9 4                   | 0.94 16                      | 4925.0                    | 2718.06 (8+)                              | 2803.1 10                     | 0.042 20                   | 4440.8                 | 1637.61 | 4+             |
| 2215.9 5                   | 0.64 10                      | 3853.5                    | 1637.61 4+                                | 2827.2 10                     | 0.084 26                   | 5879.9                 | 3052.66 | 8+             |
| 2224.0 10                  | 0.076 20                     | 5787.2                    | 3563.2                                    | 2835.9 10                     | 0.028 12                   | 6225.9                 | 3389.2  |                |
| 2236.8 <sup>&amp;</sup> 20 | 0.13 <sup>&amp;‡</sup> 6     | 3874.4                    | 1637.61 4+                                | 2851.8 10                     | 0.028 10                   | 6554.8                 | 3702.9  |                |
| 2236.8 <sup>°</sup> 20     | 0.13 <sup>x+</sup> 6         | 4797.9                    | $2561.09(6)^+$                            | 2860.0 <sup><i>a</i></sup> 10 | $0.21^{a}$ 5               | 4497.1                 | 1637.61 | 4+             |
| 2237.8 8                   | 0.062 20                     | 4827.8                    | 2589.9                                    | 2860.0 <sup>a</sup> 10        | 0.16 <sup><i>a</i></sup> 5 | 5420.7                 | 2561.09 | $(6)^{+}$      |
| 2262.9 9                   | 0.17 8                       | 4824.0                    | 2561.09 (6)+                              | 2866.4 20                     | 0.016 16                   | 5540.1                 | 2674.6  |                |
| 2277.0 7                   | 0.13 3                       | 4311.7                    | 2034.29 (5+,6+)                           | 2866.4 10                     | 0.084 26                   | 5918.9                 | 3052.66 | 8+             |
| 2282.8 20                  | 0.13 4                       | 4512.8                    | 2230.64 6+                                | 2875.1 10                     | 0.074 24                   | 4909.6                 | 2034.29 | $(5^+, 6^+)$   |

## $\gamma(^{102}\text{Cd})$ (continued)

| $E_{\gamma}^{\dagger}$        | $I_{\gamma}^{\dagger @}$   | $E_i$ (level) $J_i^{\pi}$ | $\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$ | $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\dagger @}$ | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $\mathbf{E}_{f}$ | $\mathbf{J}_{f}^{\pi}$ |
|-------------------------------|----------------------------|---------------------------|------------------------------------------|------------------------|--------------------------|------------------------|----------------------|------------------|------------------------|
| 2876.8 20                     | 0.016 16                   | 5435.9                    | 2561.09 (6) <sup>+</sup>                 | 3549.0.8               | 0.26.8                   | 5779.8                 |                      | 2230.64          | 6+                     |
| 2900.3 20                     | 0.08 4                     | 4536.4                    | 1637.61 4+                               | 3553.6 10              | 0.12 3                   | 5191.3                 |                      | 1637.61          | 4 <sup>+</sup>         |
| 2918.9 8                      | 0.068 20                   | 5508.7                    | 2589.9                                   | 3559.4 10              | 0.010 6                  | 6612.1                 |                      | 3052.66          | 8+                     |
| 2945.4 9                      | 0.108 10                   | 5506.9                    | 2561.09 (6)+                             | 3599.0 20              | 0.068 20                 | 5237.5                 |                      | 1637.61          | 4+                     |
| 2958.8 10                     | 0.066 20                   | 5361.6                    | 2402.8                                   | 3607.9 10              | 0.082 26                 | 5246.2                 |                      | 1637.61          | 4+                     |
| 2962.9 9                      | 0.048 20                   | 6352.2                    | 3389.2                                   | 3619.2 20              | 0.046 14                 | 5654.8                 |                      | 2034.29          | $(5^+, 6^+)$           |
| 2963.4 20                     | 0.11 6                     | 3741.0                    | 776.61 2+                                | 3683.1 20              | 0.08 3                   | 6244.3                 |                      | 2561.09          | $(6)^+$                |
| 2976.1 20                     | 0.054 22                   | 5691.7                    | 2718.06 (8 <sup>+</sup> )                | 3683.4 20              | 0.13 4                   | 4460.1                 |                      | 776.61           | 2+                     |
| 2994.2 20                     | 0.088 26                   | 5396.6                    | 2402.8                                   | 3702.0 6               | 0.23 5                   | 5932.6                 |                      | 2230.64          | 6+                     |
| 3001.1 10                     | 0.058 24                   | 5387.9                    | 2386.79 (6 <sup>+</sup> )                | 3715.5 10              | 0.14 5                   | 5945.4                 |                      | 2230.64          | 6+                     |
| 3011.8 5                      | 0.16 5                     | 5399.1                    | 2386.79 (6 <sup>+</sup> )                | 3725.8 20              | 0.08 3                   | 5758.8                 |                      | 2034.29          | $(5^+, 6^+)$           |
| 3019.6 20                     | 0.028 28                   | 4657.3                    | 1637.61 4+                               | 3762.7 20              | 0.28 8                   | 6150.4                 |                      | 2386.79          | $(6^{+})$              |
| 3035.0 20                     | 0.03 3                     | 4672.7                    | 1637.61 4+                               | 3764.9 20              | 0.042 20                 | 6169.4                 |                      | 2402.8           |                        |
| 3058.6 10                     | 0.066 22                   | 6447.9                    | 3389.2                                   | 3782.8 20              | 0.20 6                   | 6169.4                 |                      | 2386.79          | $(6^{+})$              |
| 3067.5 9                      | 0.07 6                     | 5298.2                    | 2230.64 6+                               | 3803.5 20              | 0.06 3                   | 5441.2                 |                      | 1637.61          | 4+                     |
| 3090.9 20                     | 0.06 3                     | 5477.7                    | 2386.79 (6 <sup>+</sup> )                | 3824.5 20              | 0.03 3                   | 5462.2                 |                      | 1637.61          | 4+                     |
| 3093.4 7                      | 0.28 8                     | 5654.8                    | 2561.09 (6)+                             | 3827.2 20              | 0.100 20                 | 5861.6                 |                      | 2034.29          | $(5^+, 6^+)$           |
| 3130.5 5                      | 0.16 5                     | 5691.7                    | 2561.09 (6)+                             | 3851.3 20              | 0.126 24                 | 5489.2                 |                      | 1637.61          | 4                      |
| 3130.9 9                      | 0.14 4                     | 5849.0                    | 2/18.06 (8+)                             | 3860.6 20              | 0.12 3                   | 5895.0                 |                      | 2034.29          | $(5^+, 6^+)$           |
| 3164.5 <sup>&amp;</sup> 10    | $0.17^{&\mp} 6$            | 5752.7                    | 2589.9                                   | 3869.7 10              | 0.42 8                   | 5506.9                 |                      | 1637.61          | 4+                     |
| 3164.5° 10                    | $0.17^{-6}$                | 6292.2                    | 3128.9                                   | 3869.7 20              | 0.12 4                   | 6255.7                 |                      | 2386.79          | $(6^+)$                |
| 3165.2 10                     | 0.26 5                     | 5396.6                    | 2230.64 6                                | 3897.7 20              | 0.074 20                 | 5932.6                 |                      | 2034.29          | (5',6')                |
| 3190.7 10                     | 0.09 6                     | 5909.2                    | $2/18.06(8^{+})$                         | 3920.7 20              | 0.14 4                   | 6150.4                 |                      | 2230.64          | 0'<br>4 <sup>+</sup>   |
| 3196.3 20                     | 0.18 0                     | 5/58.8                    | 2561.09 (6)                              | 3932.6 20              | 0.14 3                   | 55/0.5                 |                      | 1637.61          | 4'                     |
| 3200.6 10                     | 0.14 4                     | 5918.9                    | $2/18.06(8^{+})$                         | 3941.2 10              | 0.070 24                 | 6344.1                 |                      | 2402.8           | <i>(</i> +             |
| 3213.0 20                     | 0.03 3                     | 5240.2                    | 2034.29 (5,0)                            | 4060.2 10              | 0.22.3                   | 0292.2                 |                      | 2230.04          | 0 ·<br>2+              |
| 3224.3 20                     | 0.098 20                   | 5945.4<br>5797 0          | $2/18.00(8^{\circ})$                     | 4085.1 20              | 0.008 8                  | 4801.8                 |                      | 1627.61          | 2 ·<br>4 +             |
| 3223.9 20                     | $0.03 \ 3$                 | 5787.2                    | 2562.2                                   | 4085.7 20              | 0.058 12<br>0.044 22     | 5727 1                 |                      | 1627.61          | 4 ·<br>1+              |
| 3230.8 20                     | 0.050 12                   | 1886 1                    | 1637.61 <i>A</i> <sup>+</sup>            | 4099.7 20              | 0.044 22                 | 61/6.0                 |                      | 203/ 20          | $(5^+ 6^+)$            |
| 3258 0 0                      | 0.00 3                     | 5/180 2                   | $2230.64.6^+$                            | 4111.0 20              | 0.000 20                 | 5769.6                 |                      | 1637.61          | (3,0)                  |
| 3267.9.6                      | 0.08/ 26                   | 5654.8                    | $2230.04 \ 0$<br>$2386.70 \ (6^+)$       | 4137.0.20              | 0.11.5<br>0.15 /         | 6169.0                 |                      | 203/ 20          | $(5^+ 6^+)$            |
| 3207.9 0                      | 0.040 14                   | 5508 7                    | 2300.79(0)                               | 4201 2 20              | 0.13 + 0.038 + 20        | 5838.9                 |                      | 1637.61          | (3,0)                  |
| 3277.8.6                      | 0.15.5                     | 4915.6                    | $1637.61.4^+$                            | 4201.2 20              | 0.11.3                   | 5865.6                 |                      | 1637.61          | -<br>4+                |
| 3305 2 20                     | 0.072.26                   | 5691 7                    | $2386.79(6^+)$                           | 4250 6 20              | 0.070.22                 | 5888 3                 |                      | 1637.61          | 4+                     |
| 3309.2.8                      | 0.19.3                     | 5540.1                    | $2230.64 6^+$                            | 4259.4.20              | 0.062.20                 | 62.92.2                |                      | 2034.29          | $(5^+, 6^+)$           |
| 3335.8 5                      | 0.18 6                     | 5722.7                    | $2386.79(6^+)$                           | 4296.8 7               | 0.080 20                 | 5934.5                 |                      | 1637.61          | 4 <sup>+</sup>         |
| 3343.9 10                     | 0.12.3                     | 4981.8                    | 1637.61 4+                               | 4310.6 8               | 0.064 22                 | 5948.3                 |                      | 1637.61          | 4+                     |
| 3344.2 5                      | 0.070 22                   | 5934.5                    | 2589.9                                   | 4402.6 20              | 0.026 26                 | 6963.8                 |                      | 2561.09          | $(6)^{+}$              |
| 3349.9 20                     | 0.068 26                   | 5909.2                    | 2561.09 (6)+                             | 4473.5 20              | 0.092 20                 | 6111.2                 |                      | 1637.61          | 4+                     |
| 3358.4 20                     | 0.024 24                   | 4996.1                    | 1637.61 4+                               | 4512.4 20              | 0.17 4                   | 6150.4                 |                      | 1637.61          | 4+                     |
| 3366.4 20                     | 0.034 20                   | 5004.1                    | 1637.61 4+                               | 4530.9 20              | 0.082 26                 | 6169.4                 |                      | 1637.61          | 4+                     |
| 3383.4 20                     | 0.07 4                     | 5614.1                    | 2230.64 6+                               | 4557.6 20              | 0.066 16                 | 6195.6                 |                      | 1637.61          | 4+                     |
| 3403.6 20                     | 0.04 4                     | 5040.7                    | 1637.61 4+                               | 4617.1 20              | 0.026 12                 | 6255.7                 |                      | 1637.61          | 4+                     |
| 3417.6 20                     | 0.014 14                   | 5055.3                    | 1637.61 4+                               | 4654.0 10              | 0.026 14                 | 6292.2                 |                      | 1637.61          | 4+                     |
| 3421.1 10                     | 0.016 8                    | 7124.1                    | 3702.9                                   | 4781.5 20              | 0.018 18                 | 6418.6                 |                      | 1637.61          | 4+                     |
| 3424.8 10                     | 0.06 6                     | 5654.8                    | 2230.64 6+                               | 4867.1 20              | 0.026 12                 | 6504.8                 |                      | 1637.61          | 4+                     |
| 3457.7 10                     | 0.08 3                     | 6018.9                    | 2561.09 (6)+                             | 4972.8 20              | 0.014 10                 | 7007.2                 |                      | 2034.29          | $(5^+, 6^+)$           |
| 3473.1 10                     | 0.016 10                   | 6525.8                    | 3052.66 8+                               | 5003.5 20              | 0.028 10                 | 5779.8                 |                      | 776.61           | 2+                     |
| 3474.7 <mark>a</mark> 10      | $0.030^{a}$ 8              | 5508.7                    | 2034.29 (5+,6+)                          | 5013.2 20              | 0.016 8                  | 6650.9                 |                      | 1637.61          | 4+                     |
| 3474.7 <sup><i>a</i></sup> 10 | 0.14 <sup><i>a</i></sup> 3 | 5705.4                    | 2230.64 6+                               | 5029.1 20              | 0.030 10                 | 6666.8                 |                      | 1637.61          | 4+                     |
| 3478.8 8                      | 0.044 26                   | 5865.6                    | 2386.79 (6 <sup>+</sup> )                | 5051.1 20              | 0.016 8                  | 6688.8                 |                      | 1637.61          | 4+                     |
| 3499.5 20                     | 0.076 26                   | 5902.4                    | 2402.8                                   | 5109.0 20              | 0.016 8                  | 6746.7                 |                      | 1637.61          | 4+                     |
| 3529.4 10                     | 0.076 26                   | 5932.6                    | 2402.8                                   | 5326.6 20              | 0.016 6                  | 7361.0                 |                      | 2034.29          | $(5^+, 6^+)$           |
| 3536.6 20                     | 0.080 20                   | 5175.6                    | 1637.61 4+                               |                        |                          |                        |                      |                  |                        |

## $\gamma(^{102}Cd)$ (continued)

- <sup>†</sup> From priv. comm. (2003GiZX) received as e-mail reply on June 26 and July 8,2003 from M. Gierlik of 2003Gi06. Intensities are not corrected for summing effects which could amount to 5% for 100% cascades. As suggested by the total absorption spectroscopy (tas), a large number of weak  $\gamma$  rays remain unobserved.
- <sup>‡</sup> Same intensity is quoted for two components but with different uncertainties. It is not clear whether the values correspond to divided or undivided intensities.
- <sup>#</sup> The energy and intensity values are the same for the doublet, but different uncertainties are quoted. It is not clear whether the values correspond to divided or undivided intensities.
- <sup>@</sup> Absolute intensity per 100 decays.
- <sup>&</sup> Multiply placed with undivided intensity.
- <sup>a</sup> Multiply placed with intensity suitably divided.

#### Decay Scheme





#### Decay Scheme (continued)

Intensities: Relative  $I_{\gamma}$  & Multiply placed: undivided intensity given



## Decay Scheme (continued)



## Decay Scheme (continued)



## Decay Scheme (continued)

![](_page_19_Figure_6.jpeg)

#### Decay Scheme (continued)

![](_page_20_Figure_6.jpeg)

#### Decay Scheme (continued)

![](_page_21_Figure_6.jpeg)

## Decay Scheme (continued)

![](_page_22_Figure_6.jpeg)

## Decay Scheme (continued)

![](_page_23_Figure_6.jpeg)

#### Decay Scheme (continued)

![](_page_24_Figure_6.jpeg)

#### Decay Scheme (continued)

![](_page_25_Figure_6.jpeg)

#### Decay Scheme (continued)

 $\label{eq:Intensities: Relative I_{\gamma}} Intensities: Relative I_{\gamma} & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided \\$ 

![](_page_26_Figure_6.jpeg)

![](_page_26_Figure_7.jpeg)

## Decay Scheme (continued)

![](_page_27_Figure_6.jpeg)

#### Decay Scheme (continued)

 $\label{eq:Intensities: Relative I_{\gamma}} Intensities: Relative I_{\gamma} & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided \\$ 

![](_page_28_Figure_6.jpeg)

## Decay Scheme (continued)

![](_page_29_Figure_6.jpeg)

#### Decay Scheme (continued)

 $\label{eq:Intensities: Relative I_{\gamma}} Intensities: Relative I_{\gamma} & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided \\$ 

![](_page_30_Figure_6.jpeg)

## $\frac{102}{10} \text{In } \varepsilon \text{ decay} \qquad 2003 \text{Gi06}$

#### Decay Scheme (continued)

![](_page_31_Figure_6.jpeg)

<sup>102</sup><sub>48</sub>Cd<sub>54</sub>