¹⁰²Cd ε decay **1991Ke08,1970Hn02**

History								
Type Author		Citation	Literature Cutoff Date					
Full Evaluation	D. De Frenne	NDS 110, 1745 (2009)	31-Dec-2008					

Parent: ¹⁰²Cd: E=0; J^{π}=0⁺; T_{1/2}=5.5 min 5; Q(ε)=2587 8; % ε +% β ⁺ decay=100.0

1991Ke08: source: mass separated spallation source produced at ISOLDE (CERN), also by fusion evaporation reactions using an on-line mass separator at GSI. Measured: Eβ, Iβ, Eγ, Iγ, Xγ and γγ-coin, Ice, α. Deduced: ¹⁰²Ag levels J, π, Q(β⁺).
1970Hn02: measured Eγ, Iγ, γγ-coin, Ice, α; isotopically separated samples.
Others: 1966Bu05, 1969Ha03, 1970Hn03, 1976CoYX, 1977CoZT.

Absolute $\alpha(K)$ values were determined by simultaneously measuring ce and γ spectra (1970Hn02).

¹⁰²Ag Levels

E(level) [†]	$J^{\pi \#}$	T _{1/2} ‡	Comments
0	5 ⁽⁺⁾	12.9 min 3	
9.40 7	2+	7.7 min 5	E(level): the position of this level was deduced from γ -ray energy differences of γ -rays ordered according to $\gamma\gamma$ -coincidence results (1991Ke08).
97.45 5	4 ⁽⁺⁾		
125.54 10	2+,3+		
156.49 6	3+		
369.98 8	2+		
490.44 11	1+		
540.59 <i>13</i>	$1^+, 2^+, 3^+$		
1045.59 15	1+		
1368.6 <i>3</i>	1+		
1449.0 4	1+		
1727.2 7	(1^{+})		
1965.4 7	1+		

[†] From a least-squares procedure using measured gammas.

[‡] From Adopted Levels.

[#] From Adopted Levels.

ε, β^+ radiations

 β -branches were deduced from total γ -ray transition intensities assuming no β -feeding either to the g.s. or to 9.3-keV isomer.

E(decay)	E(level)	$I\beta^+$ [†]	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^\dagger$	Comments
(622 8)	1965.4		0.36 2	4.88 3	0.36 2	εK=0.8573; εL=0.1142; εM+=0.02846
(860 8)	1727.2		0.14 5	5.58 16	0.14 5	εK=0.8598; εL=0.1123; εM+=0.02789
(1138 8)	1449.0		0.57 8	5.22 7	0.57 8	εK=0.8614; εL=0.1111; εM+=0.02754
(1218 8)	1368.6	0.0021 4	6.3 6	4.24 5	6.3 6	av Eβ=95 4; εK=0.8614; εL=0.1108; εM+=0.02746
(1541 8)	1045.59	0.44 3	25.3 8	3.841 18	25.7 8	av E β =236 4; ε K=0.8478; ε L=0.10821 13; ε M+=0.02679 4
(2046 [‡] 8)	540.59	0.21 13	1.1 7	>5.5	<1.3	av Eβ=456 4; εK=0.721 4; εL=0.0914 4; εM+=0.02260
(2097 8)	490.44	12.1 4	51.8 <i>15</i>	3.799 17	63.9 18	av E β =478 4; ε K=0.701 4; ε L=0.0888 5; ε M+=0.02195 11

[†] Absolute intensity per 100 decays.

[‡] Existence of this branch is questionable.

¹⁰²Cd ε decay **1991Ke08,1970Hn02** (continued)

 $\gamma(^{102}\mathrm{Ag})$

Normalization from sum of I(γ +ce) to g.s. + 9.3 level=100. α (K)exp, α (L)exp from (1991Ke08), K:(L+M) from (1970Hn02).

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger @}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult. [#]	α^{\ddagger}	Comments
(9.40 8)		9.40	2+	0	5(+)	(M3)	$1.2 \times 10^7 5$	
28 ^{&}	< 0.06	125.54	2+,3+	97.45	4 ⁽⁺⁾			I_{γ} : from $\gamma\gamma$ data.
59.05 <i>5</i>	2.4 1	156.49	3+	97.45	4 ⁽⁺⁾	M1	1.89	$\alpha(K) = 1.642; \ \alpha(L) = 0.2057;$ $\alpha(M) = 0.0392; \ \alpha(N+) = 0.00677$ $\alpha(K) \exp = 1.5 2$ K/(L+M) = 6.2 8
97.46 5	5.9 <i>3</i>	97.45	4 ⁽⁺⁾	0	5 ⁽⁺⁾	M1	0.451 7	$\alpha(K) = 0.3916; \alpha(L) = 0.0487;$ $\alpha(M) = 0.00927; \alpha(N+) = 0.0016$ $\alpha(K) \exp = 0.51 I2; \alpha(L) \exp = 0.058 9$ K/(I + M) > 3
116.13 8	10.9 6	125.54	2+,3+	9.40	2+	M1	0.276 4	$\alpha(K) = 0.2395; \alpha(L) = 0.0297;$ $\alpha(M) = 0.00565; \alpha(N+) = 0.0016$ $\alpha(K) = 0.253; \alpha(L) = 0.0304$ K/(L+M) = 62
120.47 9	4.6 3	490.44	1+	369.98	2+	M1	0.249	α (K)exp=0.20 3 α (K)= 0.2163; α (L)= 0.02677; α (M)= 0.0051
147.09 <i>10</i>	0.87 12	156.49	3+	9.40	2+	M1+E2		α(K)exp=0.22 3; α(L)exp=0.037 9 α(K)= 0.2104; α(L)= 0.03592; α(M)= 0.00694; α(N+)=0.00115 δ: No δ given by (1970Hn02).
156.1 <i>3</i>	0.40 15	156.49	3+	0	5(+)			
213.50 9	7.5 7	369.98	2+	156.49	3+	M1	0.0526	α (K)exp=0.0506; α (L)exp=0.0086 19
044.4.7	0.04.10	260.00	2+	105 54	a+ a+			K/(L+M)=52
244.4 /	0.24 10	369.98	2.	125.54	2, 3,			
322.5 c 360.58 <i>10</i>	<0.3 5.6 3	1368.6 369.98	2 ⁺	1045.59 9.40	2 ⁺	E2	0.0171	α (K)exp=0.0165 <i>18</i> ; α (L)exp=0.0020 <i>3</i> α (K)= 0.01461; α (L)= 0.0020; α (M)= 0.00038
384	0.25 10	540.59	$1^+, 2^+, 3^+$	156.49	3+			
415.05 15	12.8 9	540.59	1+,2+,3+	125.54	2+,3+	M1,E2		$\alpha(K)\exp=0.0095 \ 8;$ $\alpha(L)\exp=0.00106 \ 15$ $\alpha(K)= \ 0.0089; \ \alpha(L)= \ 0.0011;$ $\alpha(M)= \ 0.00022$
481.00 <i>18</i>	100 3	490.44	1+	9.40	2+	M1,E2		$\alpha(K) \exp = 0.0063 7$ $\alpha(L) \exp = 0.00083 11$ $\alpha(K)(M1) = 0.00585 9$ $\alpha(K)(E2) = 0.00610 9.$ $\alpha(L)(M1) = 0.000694 10$ $\alpha(L)(E2) = 0.000791 12$
505.00 <i>15</i>	12.6 9	1045.59	1+	540.59	1+,2+,3+	M1,E2		$\alpha(K) \exp[=0.0048.7]$ $\alpha(K) \exp[=0.0048.7]$ $\alpha(K) = 0.0052; \alpha(L) = 0.00065;$ $\alpha(M) = 0.00012$ E _y : placement from 1991Ke08, other placement by 1970Hn02.
531.20 20	1.7 2	540.59	1+,2+,3+	9.40	2+	M1,E2		α (K)exp=0.0058 <i>16</i> α (K)= 0.0046; α (L)= 0.00057; α (M)= 0.00011

Continued on next page (footnotes at end of table)

102 Cd ε decay 1991Ke08,1970Hn02 (continued)

$\gamma(^{102}\text{Ag})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger @}$	E_i (level)	\mathbf{J}_i^{π}	E_f	J_f^π
555 <mark>&</mark> 675 65 20	<3.8	1045.59	1^+ 1 ⁺	490.44	$1^+_{2^+}$
920 ^{&} 1	<0.1	1045.59	1 1+	125.54	$2^+,3^+$
998.6 7 1036.1 <i>3</i>	0.48 10	1368.6 1045.59	1' 1+	369.98 9.40	2+ 2+
1079.1 5 1359.2 <i>3</i>	0.25 9 10 <i>I</i>	1449.0 1368.6	1^+ 1^+	369.98 9.40	2+ 2+
1439.6 <i>5</i> 1717.8 <i>7</i>	$\begin{array}{c} 0.7 \ 1 \\ 0.23 \ 8 \end{array}$	1449.0 1727.2	1^+ (1 ⁺)	9.40 9.40	2+ 2+
1956.0 7	0.60 3	1965.4	1+	9.40	2+

[†] From 1991Ke08, unless noted otherwise.

[‡] Theoretical total conversion coefficients (bricc) were used for calculating I($\varepsilon + \beta^+$). These coefficients corresponded to the multipolarity indicated.

[#] Deduced from $\alpha(K)exp$, $\alpha(L)exp$ and K:(L+M) ratios. Possible multipolarities, which can be ruled out based on the decay ^(a) For absolute intensity per 100 decays, multiply by 0.60 2.
[&] Placement of transition in the level scheme is uncertain.

 $^{102}_{47}\mathrm{Ag}_{55}$

4