Adopted Levels, Gammas

History Type Author Citation Literature (Sutoff Date					
Full Evaluation D. De Frenne NDS 110, 1745 (2009) 31-Dec	-2008					
$Q(\beta^{-})=-2587 \ 8; \ S(n)=8983 \ 10; \ S(p)=4105 \ 10; \ Q(\alpha)=-1496 \ 15 \ 2012Wa38$ Note: Current evaluation has used the following Q record. $Q(\beta^{-})=-2587 \ 8; \ S(n)=911\times10^{1} \ 11; \ S(p)=4130 \ 30; \ Q(\alpha)=-1515 \ 30 \ 2003Au03$						
Ag Levels						
All band information from (HI, $xn\gamma$) (1995Ra13).						
Cross Reference (XREF) Flags						
$\begin{array}{l} A & {}^{102}\text{Ag IT decay} \\ B & {}^{102}\text{Cd }\varepsilon \text{ decay} \\ C & (\text{HI,xn}\gamma) \end{array}$						
E(level) [†] $J^{\pi \ddagger}$ $T_{1/2}^{@}$ XREF Comments						
0^{b} $5^{(+)}$ 12.9 min 3 ABC $\%\epsilon + \%\beta^{+} = 100$						
9.40 7 2 ⁺ 7.7 min 5 AB μ =+4.6 7 (1989Ra17) J ^{π} : from 1970Wa35, atomic beam, π suggested fr T _{1/2} : Weighted average of 13.0 min 4 (1967Ch05) %IT=49 5; % ε +% β ⁺ =51 5 μ =+4.14 25 μ : From 1989Ra17. %IT: %IT-branching was established by following 10 ² Pd (see 1971Hn05).	μ =+4.6 7 (1989Ra17) J ^π : from 1970Wa35, atomic beam, π suggested from μ and syst. T _{1/2} : Weighted average of 13.0 min 4 (1967Ch05), 12.8 min 5 (1970Hn03). %IT=49 5; %ε+%β ⁺ =51 5 μ=+4.14 25 μ: From 1989Ra17. %IT: %IT-branching was established by following the decay of the 556.7γ in ¹⁰² Pd (see 1971Hn05)					
97.45 5 4 ⁽⁺⁾ BC J^{π} : from 1968Gr01, atomic beam, π from M1,E2 $T_{1/2}$: from 1967Ch05. Other: 1970Hn03. J^{π} : cascade in ¹⁰² Cd ε decay of 213 γ (M1) 58.9 γ (connecting 2 ⁺ to 5 ⁺ levels, gives apart from gs and $J^{\pi}(97.4 \text{ level})=4^+$, I^{π} : M1 γ to 2 ⁺ .28 γ to 4 ⁺	J ^{π} : from 1968Gr01, atomic beam, π from M1,E2 from 1 ⁺ . T _{1/2} : from 1967Ch05. Other: 1970Hn03. J ^{π} : cascade in ¹⁰² Cd ε decay of 213 γ (M1) 58.9 γ (M1) and 97.4 γ (M1), connecting 2 ⁺ to 5 ⁺ levels, gives apart from gs J^{π} =5 ⁺ , J^{π} (156.3 level)=3 ⁺ , and J^{π} (97.4 level)=4 ⁺ ,					
141.0^{b} 6 ⁽⁺⁾ 3.5 ns 5 C $T_{1/2}$: from 141 γ time correlation spectrum in ⁹² N	fo(¹² C,pn).					
156.49 6 3^+ B J^{π} : see 97.4 level.						
181.0° (5 ⁺) C						
336.1 $6^{(+)}$ C Branchings of the level from ${}^{92}Mo({}^{12}C,pn)$.	Branchings of the level from ⁹² Mo(¹² C,pn).					
$369.98 8 2^{+\#}$ B J ^{π} : see 97.4 level.						
$490.44 \ II \ 1^{+\#}$ B						
540.59 <i>13</i> $1^+, 2^+, 3^+$ B J^{π} : from 531 γ M1,E2 to 2^+ ; 415 γ M1,E2 to $2^+, 3^+$	⁺ . ε feeding from 0 ⁺ is					
845.6^{b} 8 ⁽⁺⁾ 0.35 ps <i>13</i> C						
1020.1^{b} 9 ⁽⁺⁾ $1.03 \text{ ps } 9$ C						
1045.59 <i>16</i> 1 ^{+#} B						
1200.8 $9^{(+)}$ C						
1369.04 $1^{+\pi}$ B						
$1440.0 4$ $1^{+\#}$						

Adopted Levels, Gammas (continued)

¹⁰²Ag Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} @	XREF	Comments
1706.2 ^{&}	(9 ⁻)	3.7 ps 12	С	
1727.2 7	$(1^+)^{\#}$		В	
1765.8 <mark>b</mark>	(10 ⁺)	0.27 ps 9	С	
1837.8 ^a	(10^{+})		С	
1896.0 ⁰	$11^{(+)}$	1.78 ps 67	С	
1965.4 8	1+#		В	
2103.9 ^{X}	(10^{-})	0.34 ps 8	C	Level branching from 92 Mo(12 C,pn) because in (16 O, 89 Y) 555 γ 1.
2117	(9 ⁻ ,10 ⁻)	<2.8 ns	С	J^{n} : $J^{n}=9^{-1}$ favored from DCO, 10^{-1} from systematics. T _{1/2} : from time correlation spectrum in 92 Mo(12 C.pn).
2179?	(10 ⁻)		С	1/2
2203.5			С	
2377.7 [°]	(10 ⁻)		С	J^{π} : $J^{\pi}=10^{-}$ suggested from corresponding bandhead state in ¹⁰⁶ Ag.
2453.4 ^{&}	(11 ⁻)	0.44 ps 10	С	
2533?	(11^{-})		C	
2614.5° 2618.5	(11)		C	$J^{*}: J^{*}=11$ suggested from DCO and corresponding states in ¹⁰⁰ Ag.
2689?			c	
2847.0 ^b	$13^{(+)}$		C	
2889.0 ^C	(12^{-})		C	J^{π} : $J^{\pi}=12^{-}$ suggested from DCO and corresponding states in ¹⁰⁶ Ag.
2919.8 <mark>&</mark>	(12 ⁻)	0.47 ps 7	С	Data of different (HI,xn γ) reactions for branching of this level are in mutual disagreement (see 1983Tr01 and 1995Ra13).
2937	(12 ⁻)		С	
3042.6 ^b	$12^{(+)}$		С	
3157.1 ^c	$13^{(-)}$		С	J^{π} : $J^{\pi}=13^{-}$ suggested from DCO and corresponding states in ¹⁰⁶ Ag.
3194.5 <mark>&</mark>	(13 ⁻)	1.50 ps <i>33</i>	С	$T_{1/2}$: the evaluators have correlated the $T_{1/2}(274.5\gamma)=1.50$ ps 33 with the 3194.5-keV level (1995Ra13) and not with a 3661.9-keV level 1.
3407.2 <mark>&</mark>	(13 ⁻)		С	
3711.7 <mark>&</mark>	(14 ⁻)		С	J^{π} : $J^{\pi}=14^{-}$ suggested from DCO and corresponding states in ¹⁰⁶ Ag. Branching is not reliable because 554.8 is a member of a complex 102.
4094.5 <mark>b</mark>	$14^{(+)}$		С	
4178.1 <mark>&</mark>	(15 ⁻)		С	
4680.8 <mark>&</mark>	(16 ⁻)		С	
4745.5?	. ,		С	
5164.0 <mark>&</mark>	(17 ⁻)		С	
5644.1 <mark>&</mark>	(18 ⁻)		С	
6107.5 <mark>&</mark>	(19 ⁻)		С	

[†] From a least squares procedure using adopted gammas.

[±] Unless noted otherwise, from $\gamma(\theta)$, γ lin pol and $\alpha(K)$ exp and observed band structure in different (HI,xn γ) reactions. [#] log *ft* indicates allowed transition from 0⁺ ¹⁰²Cd g.s.

[@] Unless noted otherwise, from a reanalysis of the results of 1989Vo13 obtained by Doppler-shift attenuation or plunger method (1992Le10).

& Member of a $\Delta J=1$ band based on $J^{\pi}=(8^{-})$ level at 1548.8 keV.

^{*a*} Member of a $\Delta J=1$ band based on $J^{\pi}=(7^+)$ level at 383 keV.

^b Member of a $\Delta J=1$ band based on $J^{\pi}=5^{(+)}$ g.s.

^c Member of a $\Delta J=1$ band based on $J^{\pi}=(10^{-})$ level at 2377 keV.

					-	Adopted Level	s, Gammas (continued)	
							$\gamma(^{102}\text{Ag})$		
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ	$\alpha^{\#}$	Comments
9.40	2+	(9.40 8)	100	0	5 ⁽⁺⁾	(M3)		1.154×10 ⁷	B(M3)(W.u.)=1.63 23 E _a : from 102 Cd ε decay (1991Ke08).
97.45 125.54	$4^{(+)}$ 2+ 3+	97.46 <i>5</i>	100	0 9 40	$5^{(+)}$ 2 ⁺	M1 M1		0.451	2y. nom - Ca c actaj (199111000).
141.0	$6^{(+)}$	141.0	100	0	$5^{(+)}$	M1+E2	0.8 3	0.26 5	B(M1)(W.u.)=0.0011 4; B(E2)(W.u.)=32 16
130.49	5	147.09 <i>10</i>	36 5	97.43	2^+	M1+E2		1.09	Mult.: No δ given in ¹⁰² Cd ε decay.
181.0	7 ⁽⁺⁾	40.0	17.0	141.0	$6^{(+)}$	(M1)		5.90	$\alpha(K)=5.11; \ \alpha(L)=0.644; \ \alpha(M)=0.1226$
186.8	(5 ⁺)	89.7 2 187.2 2	100 <i>19</i> 70 <i>19</i>	97.45 0	$4^{(+)}$ $5^{(+)}$	(M1) (M1)		0.569 0.074 8	
336.1	6 ⁽⁺⁾	149.2 2 336.1 2	100 <i>12</i> 46 <i>10</i>	186.8 0	(5^+) $5^{(+)}$	M1 (M1)		0.138 0.0163	α(K)exp=0.014 4
369.98	2+	213.50 9 244.4 7	100 9 3.2 1	156.49 125.54	3+ 2+,3+	M1		0.053	
382.0	(7+)	360.58 <i>10</i> 46.0 <i>2</i>	75 <i>4</i> 100	9.40 336.1	2^+ $6^{(+)}$	E2 M1		0.0171 3.94	$\alpha(K)=3.416; \ \alpha(L)=0.4294; \ \alpha(M)=0.082$
490.44	1+	120.4 2 481.0 2	4.6 <i>3</i> 100	369.98 9.40	2+ 2+	M1 M1,E2		0.249	
540.59	1+,2+,3+	384 415.05 <i>15</i>	2.0 8 100 7	156.49 125.54	3^+ $2^+, 3^+$	M1,E2			
845.6	8(+)	531.2 2 463.4	13.3 10	9.40 382.0	(7^+)	M1,E2 M1			
		664.6	100	181.0	7(+)	M1+E2	-0.8 9		B(M1)(W.u.)=0.13 13; B(E2)(W.u.)= 1.7×10^{2} +25-7
921.7 1020.1	(8^+) $9^{(+)}$	540.1 2 174.5	100 13.6 <i>3</i>	382.0 845.6	(7^+) $8^{(+)}$	(M1+E2) M1+E2	+0.14 22	0.092 11	Mult.: No δ given in (HI,xn γ). B(M1)(W.u.)=0.46 5; B(E2)(W.u.)=3.E+2 +9-3
1045.59	1+	839.1 505.00	100 7 55 4	181.0 540.59	$7^{(+)}$ 1 ⁺ ,2 ⁺ ,3 ⁻	E2 + M1,E2			B(E2)(W.u.)=41 4
		555 ⁶⁶ 675.65 20	<17 30.4 <i>17</i>	490.44 369.98	1 ⁺ 2 ⁺				
		920 <i>1</i> 1036.1 <i>3</i>	<0.43 100 <i>4</i>	125.54 9.40	2 ⁺ ,3 ⁺ 2 ⁺				
1200.8	9(+)	279.5 2 819.8 <i>3</i>	100 <i>16</i> 20 <i>33</i>	921.7 382.0	(8 ⁺) (7 ⁺)	M1 E2		0.0261	I_{γ} : taken from 1995Ra13. I_{γ} : taken from 1995Ra13.
1369.0	1+	322.5 998.6 7	<3.00 4.8 10	1045.59 369.98	1 ⁺ 2 ⁺				
1449.0	1+	1359.2 <i>3</i> 1079.1 <i>5</i>	100 <i>10</i> 36 <i>13</i>	9.40 369.98	2 ⁺ 2 ⁺				
1548.8	(8 ⁻)	1439.6 5 703.9 <i>3</i>	100 <i>14</i> 100 <i>23</i>	9.40 845.6	2 ⁺ 8 ⁽⁺⁾	E1			$B(E1)(W.u.)=1.4\times10^{-6}$ 3

 $^{102}_{47}\mathrm{Ag}_{55}$ -3

L

From ENSDF

 $^{102}_{47}\mathrm{Ag}_{55}$ -3

Adopted Levels, Gammas (continued)

$\gamma(^{102}\text{Ag})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_{f}	\mathbf{J}_{f}^{π}	Mult. [‡]	δ	α #	Comments
1548.8	(8 ⁻)	1367.8	91 23	181.0	$7^{(+)}$	E1			$B(E1)(W.u.) = 5.9 \times 10^{-7} 11$
1706.2	(9 ⁻)	157.5 2	100 10	1548.8	(8 ⁻)	M1+(E2)	< 0.2	0.126 2	$B(M1)(W.u.) > 0.13; B(E2)(W.u.) < 3.6 \times 10^{2}$
		686.2 2	4.8 24	1020.1	9(+)	(E1)			$B(E1)(W.u.)=2.9\times10^{-5} 10$
		860.7 2	21 5	845.6	8(+)	È1			B(E1)(W.u.)=0.00010 4
1727.2	(1^{+})	1717.8 7	100	9.40	2+				
1765.8	(10^{+})	745.7	100	1020.1	9(+)	D			B(M1)(W.u.)=0.20 7
1837.8	(10 ⁺)	638.0	100	1200.8	9(+)	M1			
1896.0	$11^{(+)}$	130.2 3	3.8 19	1765.8	(10^{+})				
		875.9	100 8	1020.1	9(+)	E2			B(E2)(W.u.)=22 9
1965.4	1+	1956.0 7	100	9.40	2^{+}				
2103.9	(10 ⁻)	397.7 2	100 11	1706.2	(9 ⁻)	M1		0.0107	α (K)exp=0.008 2
									B(M1)(W.u.)=0.098 23
		555.0 2	11.5 4	1548.8	(8 ⁻)				
		1084.0 4		1020.1	9(+)				
2117	(9 ⁻ ,10 ⁻)	13.0	100	2103.9	(10^{-})				
2179?	(10 ⁻)	473.2 ^{@} 2	100	1706.2	(9 ⁻)				
2203.5		1183.4	100	1020.1	$9^{(+)}$				
2377.7	(10^{-})	260.8	100	2117	(9 ⁻ ,10 ⁻)	M1			
2453.4	(11^{-})	349.4 2	100 12	2103.9	(10^{-})	M1		0.0147	$\alpha(K) \exp[=0.015 4]$
		5 40.0.2	- /	1506.0	(0)	53			B(M1)(W.u.)=0.37.9
		748.0 3	74	1706.2	(9 ⁻)	E2			$B(E2)(W.u.)=1.3\times10^2$ 3
2533?	(11^{-})	354.2 ^w 2	100	2179?	(10 ⁻)				
2614.5	(11^{-})	236.8	100	2377.7	(10^{-})	M1		0.0401	
2618.5		415.1	100	2203.5					
2689?		510.3 ^w 2	100	2179?	(10^{-})				
2847.0	13(+)	951.0	100	1896.0	$11^{(+)}$	E2			
2889.0	(12^{-})	274.5	100	2614.5	(11^{-})	MI		0.0273	
2919.8	(12)	466.6	100	2453.4	(11)	MI E2			B(M1)(W.u.)=0.46 /
2037	(12^{-})	610.2 403 7 2	100	2105.9	(10^{-})	EZ			
2937	(12)	106.0.2	100 21	25557	(11) (12(+))	E2		0.133	
5042.0	12.	190.0 2	100 21	1806.0	13^{++} $11^{(+)}$	L2 M1		0.155	
3157.1	13(-)	268.1	100	2880.0	(12^{-})	$(M1\pm E2)$			Mult : No δ given in (HI vnz)
3194.5	(13^{-})	208.1	100	2009.0	(12^{-})	(M1 + E2) M1		0.0273	$B(M1)(W_{11}) = 0.69.16$
3407.2	(13^{-})	487.2	100	2919.8	(12^{-})	M1		0.0275	D(111)(11.1.)=0.09 10
0.0712	(10)	954.0	33	2453.4	(11^{-})				
3711.7	(14 ⁻)	304.8 <i>3</i>	100 21	3407.2	(13-)	M1		0.0209	
		517.4 2	84 18	3194.5	(13 ⁻)	M1			
		555.0 2	34 11	3157.1	13 ⁽⁻⁾				E_{γ} : member of complex multiplet together with 555.1 γ and 101,102 Pd impurities at almost the same energy
4094.5	14 ⁽⁺⁾	1247.4 <i>3</i>	100	2847.0	13 ⁽⁺⁾	M1			re imparties at annost the same energy.

From ENSDF

Adopted Levels, Gammas (continued)

$\gamma(^{102}\text{Ag})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	Comments
4178.1 4680.8 4745 5?	(15 ⁻) (16 ⁻)	$466.6\ 2$ $503.0\ 3$ $651\ 0^{@}\ 3$	100 100 100	3711.7 4178.1 4094 5	(14^{-}) (15^{-}) $14^{(+)}$	M1	E_{γ} : member of unresolved multiplet in (HI,xn γ).
5164.0	(17 ⁻)	483.2 3	100	4680.8	(16 ⁻)	(M1+E2)	E_{γ} : member of doublet with 480.1γ in ⁸⁹ Y(¹⁶ O,3nγ). Mult.: No δ given in (HI.xnγ).
5644.1	(18 ⁻)	480.1	100	5164.0	(17 ⁻)	(M1+E2)	E_{γ} : member of doublet with 483.2 γ in ⁸⁹ Y(¹⁶ O,3n γ). Mult : No δ given in (HI xn γ)
6107.5	(19 ⁻)	463.4	100	5644.1	(18 ⁻)		

[†] Weighted average of data from ¹⁰²Cd ε decay and (HI,xn γ) reactions if both available. If not data of individual data sets used. [‡] Multipolarities are from α (K)exp and K/L+M in ¹⁰²Cd ε decay and $\gamma(\theta)$, γ lin pol and α (K)exp in (HI,xnyp). Some possibilities are ruled out by using the adopted J^{π} assignments. It is assumed in ⁸⁹Y(¹⁶O,3n γ) (1995Ra13) that stretched quadrupole transitions are E2 and intraband dipole transitions M1.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[@] Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas

Level Scheme (continued)		$I_{\gamma} < 2\% \times I_{\gamma}^{max}$
Intensities: Type not specified		$I_{\gamma} < 10\% \times I_{\gamma}^{max}$ $I_{\gamma} > 10\% \times I_{\gamma}^{max}$
	•	$\dot{\gamma}$ Decay (Uncertain)

Legend

 $^{102}_{47}\mathrm{Ag}_{55}$

Adopted Levels, Gammas

 $^{102}_{47}\mathrm{Ag}_{55}$