¹⁰²Ag IT decay **1970Hn02,1971Hn05**

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	D. De Frenne	NDS 110, 1745 (2009)	31-Dec-2008

Parent: ¹⁰²Ag: E=9.3 4; $J^{\pi}=2^+$; $T_{1/2}=7.7$ min 5; %IT decay=49 5 Measured E γ , I γ , $\gamma\gamma$ -coin, Ice, α ; isotopically separated samples.

¹⁰²Ag Levels

E(level)	J^{π}	T _{1/2} †
0	5(+)	12.9 min 3
9.3 4	2+	7.7 min 5

[†] From Adopted Levels.

$\gamma(^{102}Ag)$

An isomeric transition branching=49% 5 was obtained by following the decay of the 556.7-keV γ -ray in ¹⁰²Pd (see 1971Hn05).

Eγ	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.	α^{\ddagger}	$I_{(\gamma+ce)}^{\dagger}$	Comments
(9.3 4)	9.3	2+	0	5 ⁽⁺⁾	(M3)	1.2×10 ⁷ 5	100	α (L)=1066×10 ⁴ ; α (M)= 252×10 ⁴ E _{γ} : the energy of this unobserved transition is deduced from energy differences of γ -rays observed in the ¹⁰² Cd ε decay (1970Hn02).

[†] For absolute intensity per 100 decays, multiply by 0.49 5.

^{\ddagger} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

